MAQAO
Hands-on exercises

Analysing a code (bt-mz)
Optimising a code

Login to the cluster with X11 forwarding

Load MAQAO environment

Copy handson material to your TMPDIR directory

(If not already done) Load compiler + MPI

MAQAOQO Performance Analysis and Optimiz

FORMATION TOULOUSE (CALMIIP, 23 NOV 2022) ation Tool 2

Ensure that the NAS are compiled with debug information (make.def)

FFLAGS = -03 -qopenmp -g -fno-omit-frame-pointer

Or copy the modified file from MAQAO_HANDSON directory

Compile bt-mz with debug information

Executing bt-mz

MAQAOQO Performance Analysis and Optimiz

FORMATION TOULOUSE (CALMIIP, 23 NOV 2022) ation Tool 3 s

Analysing bt-mz with MAQAO

Cédric Valensi

The ONE View configuration file must contain all variables for executing the
application.

Retrieve the configuration file prepared for bt-mz in batch mode from the
MAQAO HANDSON director

executable = "bt-mz.C.x"
batch_script = "maqao_bt.slurm"
batch_command = "sbatch <batch_script>"

number_processes = 4

number_nodes = 2

mpi_command = "srun --reservation=trex -p exclusive"

envv_OMP_NUM_THREADS = 18

MAQAOQO Performance Analysis and Optimiz

FORMATION TOULOUSE (CALMIIP, 23 NOV 2022) ation Tool

All variables in the jobscript defined in the configuration file must be
replaced with their name from it.

Retrieve jobscript modified for ONE View from the MAQAO_HANDSON
directory.

#SBATCH -N 2 <number nodes>
#SBATCH -n 4 <number_processes>
#SBATCH -c¢ 18 <number threads>

export OMP_NUM_THREADS=18<O0MP_NUM_THREADS>

<mpi_command> <run_command>

MAQAOQO Performance Analysis and Optimiz

FORMATION TOULOUSE (CALMIIP, 23 NOV 2022) ation Tool 6

Launch ONE View

The -xp parameter allows to set the path to the experiment directory, where
ONE View stores the analysis results and where the reports will be
generated.

If -xp is omitted, the experiment directory will be named
maqgao_<timestamp>.

WARNING:

- If the directory specified with -xp already exists, ONE View will reuse its
content but not overwrite it.

MAQAOQO Performance Analysis and Optimiz

FORMATION TOULOUSE (CALMIIP, 23 NOV 2022) ation Tool [

The HTML files are located in <exp-dir>/RESULTS/<binary>_one_htm1,
where <exp-dir> is the path of he experiment directory (set with -xp) and

<binary> the name of the executable.

> firefox <exp-dir>/RESULTS/bt-mz.C.x_one_html/index.html

A sample result directory is available in
/usr/local/trex/magao/MAQAO_HANDSON_20221123_ offline.tgz

Results can also be viewed directly on the console:

MAQAOQO Performance Analysis and Optimiz

FORMATION TOULOUSE (CALMIIP, 23 NOV 2022) ation Tool

It is also possible to compress and download the results to display them:

On your local machine:

Or use sshfs to mount the remote drive:

MAQAOQO Performance Analysis and Optimiz 11
11

FORMATION TOULOUSE (CALMIIP, 23 NOV 2022) ation Tool

Specify the additional runs to be executed in the configuration file

> less config_bt_oneview_sbatch. lua

multiruns_params = {

{ name="2p_on_single_node", number_nodes=1, number_processes=2,
number_processes_per_node=2, envv_OMP_NUM_THREADS=18 1},

{ name="2p_on_two_nodes", number_nodes=2, number_processes=2,
number_processes_per_node=1, envv_OMP_NUM_THREADS=18 },

}

Launch ONE View in scalability mode using flag --with-scalability

> cd $TMPDIR/NPB3.4-MZ-MPI/bin

> magao oneview --create-report=one --with-scalability=on \
-config=config_bt_oneview_sbatch. lua -xp=ov_sbatch_scal

FORMATION TOULOUSE (CALMIIP, 23 NOV 2022) 12 12

Optimising a code with MAQAO

Emmanuel OSERET

“Naive” dense matrix multiply
implementation in C

MAQAO Performance Analysis and Optimiz
FORMATION TOULOUSE (CALMIIP, 23 NOV 2022) ation Tool 14 1

Load MAQAO environment

Load latest GCC compiler

MAQAOQO Performance Analysis and Optimiz
FORMATION TOULOUSE (CALMIIP, 23 NOV 2022) ation TOO|

15 ;5

Compile naive implementation of matrix multiply

Analyse matrix multiply with ONE View

MAQAOQO Performance Analysis and Optimiz
FORMATION TOULOUSE (CALMIIP, 23 NOV 2022) ation Tool 16

Global Metrics (7}

Total Time (s)
Profiled Time (s)
Time in analyzed loops (%)
Time in analyzed innermost loops (%)
Time in user code (%)
Compilation Options Score (%)
Perfect Flow Complexity
Array Access Efficiency (%)
Perfect OpenMP + MPI + Pthread
Perfect OpenMP + MPI + Pthread +
Perfect Load Distribution
Potential Speedup
No Scalar Integer Nb Loops to get
Potential Speedup
FP Vectorised Nb Loops to get
Potential Speedup
Fully Vectorised Nb Loops to get
Potential Speedup
Nb Loops to get
80%

FP Arithmetic
Only

53.59
100
997
100.0
50

DAO Performance Analysis and Optimiz

FORMATION TOULOUSE (CALMIIP, 23 NOV 2022)

ation Tool

17

Total Time: 53.59 s
Time spent in loops: 100 %
Time spent in innermost loops: 99.7 %
Compilation Options: 50
Perfect Flow Complexity: 1.00
Array Access Efficiency: 83.3 %
If No Scalar Integer:
Potential Speedup: 1.00
Nb Loops to get 80%: 1
If FP Vectorized:
Potential Speedup: 2.80
Nb Loops to get 80%: 1

FORMATION TOULOUSE (CALMIIP, 23 NOV 2022)

MAQAOQO Performance Analysis and Optimiz
ation Tool

18

Loop Id | Module | Source Location | Coverage (%) |

--------- e L L T T TRy RS
1 | matm... | kernel_orig.c:9-10 | 99.64 |
2 \ | matm... | kernel_orig.c:7-10 | 0.35 |

Loop ID

MAQAOQO Performance Analysis and Optimiz
FORMATION TOULOUSE (CALMIIP, 23 NOV 2022) ation Tool 19

Vectorization

.................... Loop ID

Your loop is not vectorized.
16 data elements could be processed at once in vector registers.

By vectorizing your loop, you can lower the cost of an iteration from 4.00 to 0.25 cycles
(16.00x speedup).

Workaround

- Try another compiler or update/tune your current one:

* recompile with fassociative-math (included in Ofast or ffast-math) to extend loop
vectorization to FP reductions.

- Remove inter-iterations dependences from your loop and make it unit-stride:

* If your arrays have 2 or more dimensions, check whether elements are accessed
contiguously and, otherwise, try to permute loops accordingly:
C storage order is row-major: for(i) for(j) a[j][i] = b[j]l[i]; (slow, non stride 1) =>
for(i) for(j) a[i]l[j] = b[i]l[j]; (fast, stride 1)

* If your loop streams arrays of structures (AoS), try to use structures of arrays
instead (SoA):
for(i) a[i].x = b[i].x; (slow, non stride 1) => for(i) a.x[i] = b.x[i]; (fast, stride 1)

MAQAOQO Performance Analysis and Optimiz
FORMATION TOULOUSE (CALMIIP, 23 NOV 2022) ation Tool 20

Your loop is not vectorized. 16 data elements could be processed at
once in vector registers. By vectorizing your loop, you can lower the
cost of an iteration from 4.00 to 0.25 cycles (16.00x speedup).

All SSE/AVX instructions are used in scalar version (process only
one data element in vector registers). Since your execution units are
vector units, only a vectorized loop can use their full power.

« Try another compiler or update/tune your current one:;

o recompile with fassociative-math (included in Ofast or

ffast-math) to extend loop vectorization to FP reductions.
« Remove inter-iterations dependences from your loop and make
it unit-stride:

o If your arrays have 2 or more dimensions, check whether
elements are accessed contiguously and, otherwise, try
to permute loops accordingly: C storage order is row-
major: for(i) for(j) a[j][i] = b[[i]; (slow, non stride 1) =>
for(i) for(j) a[il[j] = blil[j]; (fast, stride 1)

o If your loop streams arrays of structures (AoS), try to use
structures of arrays instead (SoA): for(i) a[i].x = bl[i].x;
(slow, non stride 1) == for(i) a.x[i] = b.x[i]; (fast, stride 1)

Vectorization (summing elements):

VADDSS .

+

(scalar) .
waopps L L L L L[[]

(packed) ittt

" Accesses are not contiguous =>

let’s permute k and j loops

" No structures here...

MAQAO Performance Analysis and Optimiz 21

FORMATION TOULOUSE (CALMIIP, 23 NOV 2022) ation Tool

Logical mapping
j=0,1...

Efficient vectorization +
prefetching

Physical mapping

(C stor. order: row-major)

r (J=0; J<n; J++)
for (i=0; i<n; 1i++)
f(a[i][]1);

r (i=0; i<n; i++)
for (j=0; j<n; j++)
f(ali][]j]);

FORMATION TOULOUSE (CALMIIP, 23 NOV 2022)

MAQAO Performance Analysis and Optimiz
FORMATION TOULOUSE (CALMIIP, 23 NOV 2022) ation Tool 23

Compile permuted loops version of matrix multipl

Analyse matrix multiply with ONE View

OR usin conﬁuration scrit:

Viewing new results

(Or download the ov_perm/RESULTS/matmul_perm_one_html folder locally

and open ov_perm/RESULTS/matmul_perm_one_html/index.html)
MAQAO Performance Analysis and Optimiz
FORMATION TOULOUSE (CALMIIP, 23 NOV 2022) ation Tool 24

Global Metrics

Total Time (s)

Profiled Time (s)

Time in analyzed loops (%)

Time in analyzed innermost loops (%)

Time in user code (%)

Compilation Options Score (%0)

Perfect Flow Complexity

Array Access Efficiency (%)

Perfect OpenMP + MPI + Pthread

Perfect OpenMP + MPI + Pthread +

Perfect Load Distribution

MNo Scalar Integer

Potential Speedup
Nb Loops to get

FP Vectorised

Fully Vectorised

FP Arithmetic Only

g

Potential Speedup
Nb Loops to get

Potential Speedup

Nb Loops to get
80%

Potential Speedup
Nb Loops to get

0 ©
wiied B
00~

w
=)
.y

N e
oo ~ !
— (-

FORMATION TOULOUSE (CALMIIP, 23 NOV 2022)

MAQAO Performance Analysis and Optimiz
ation Tool

Compilation Options

Source Object
v matmul_orig
v kernel_orig.c
o
o

-march=(target) is missing.
-funroll-loops is missing.

Let’s try this

25

Your loop is vectorized, but using only 128 out of 512 biis (SSE/AVX-128 instructions on AVX-512 processors).
By fully vectorizing your loop, you can lower the cost of an iteration from 1.75 to 0.44 cycles (4.00x speedup).

All SSE/AVX instructions are used in vector version (process two or more data elemenits in vector registers).
Since your execution units are vector units, only a fully vectorized loop can use their full power.

« Recompile with march=skylake-avx512. CQA target is Skylake SP (Intel(R) Xeon(R) Skylake SP) but Let’'s add -
specialization flags are -march=x86-64

« Use vector aligned instructions: march=
1. align your arrays on 64 bytes boundaries: replace { void *p = malloc (size); } with { void *p; skyI ake-avx512
posix_memalign (&p, 64, size); }.
2. inform your compiler that your arrays are vector aligned: if array "foo’ is 64 bytes-aligned, define
a pointer 'p_foo'as __ builtin_assume_aligned (foo, 64) and use it instead of 'foo’ in the loop.

Execution units bottlenecks

Found no such bottlenecks but see expert reports for more complex bottlenecks.

MAQAO Performance Analysis and Optimiz

FORMATION TOULOUSE (CALMIIP, 23 NOV 2022) ation Tool 26

" Vectorization

"FMA

" SSE instructions (SIMD 128 bits) ® Fused Multiply-Add (A+BC)

used on a processor supporting
AVX-512 ones (SIMD 512 bits)

" => 75% efficiency loss Haswell

ADDPS XMM -

(SSE) ++++

<
128 bits

.

(AVX512)

++++++++++++++++

" Intel architectures: supported on
MIC/KNC and Xeon starting from

FORMATION TOULOUSE (CALMIIP, 23 NOV 2022)

MAQAOQO Performance Analysis and Optimiz
ation Tool

27

Compile architecture specialisation version of matrix multipl

Analyse matrix multiply with ONE View

Viewing new results:

(or download the ov_perm/RESULTS/matmul_perm_opt_one_html folder

locally and open index.html in your browser)

MAQAOQO Performance Analysis and Optimiz
FORMATION TOULOUSE (CALMIIP, 23 NOV 2022) ation Tool 28

Global Metrics (7]

Total Time (s)
Profiled Time (s)

Time in analyzed loops (%)

Time in analyzed innermost loops (%)

Time in user code (%)

Compilation Options Score (%)

Perfect Flow Complexity

Array Access Efficiency (%)

Perfect OpenMP + MPI + Pthread

Perfect OpenMP + MPI + Pthread +

Perfect Load Distribution

MNo Scalar Integer

Potential Speedup
Nb Loops to get

FP Vectorised

Fully Vectorised

FP Arithmetic
Only

Potential Speedup
Nb Loops to get

Potential Speedup
Nb Loops to get

Potential Speedup
Nb Loops to get

5.40 —
99.6
a5l 5
99.6

FORMATION TOULOUSE (CALMIIP, 23 NOV 2022)

MAQAO Performance Analysis and Optimiz

ation Tool

29

Use vector aligned instructions:

1. align your arrays on 64 bytes boundaries: replace { void *p = malloc (size); } with { void *p;
posix_memalign (&p, 64, size); }.

2. inform your compiler that your arrays are vector aligned: if array 'foo’ is 64 bytes-aligned, define a
pointer 'p_foo'as _ builtin_assume_aligned (foo, 64) and use it instead of 'foo’ in the loop.

Let’s switch to the next
proposal: vector aligned
instructions

MAQAOQO Performance Analysis and Optimiz
FORMATION TOULOUSE (CALMIIP, 23 NOV 2022) ation Tool 30

ned array version of matrix multi

=> Alignment imposes restrictions on input parameters.

MAQAOQO Performance Analysis and Optimiz

FORMATION TOULOUSE (CALMIIP, 23 NOV 2022) ation Tool

Analyse matrix multiply with ONE View

Viewing new results

(Or download the ov_align/RESULTS/matmul_align_one_html folder locally
and open ov_align/RESULTS/matmul_align_one_html/index.html in your

browser)

MAQAOQO Performance Analysis and Optimiz
FORMATION TOULOUSE (CALMIIP, 23 NOV 2022) ation Tool 32

Global Metrics (7]

Total Time (s) 3.117

Profiled Time (s) 3.10
Time in analyzed loops (%) 98.9
Time in analyzed innermost loops (%o) 5.2
Time in user code (%) 98.9
Compilation Options Score (%)

Perfect Flow Complexity
Array Access Efficiency (%)
Perfect OpenMP + MPI + Pthread

Perfect OpenMP + MPI + Pthread +
Perfect Load Distribution

Potential Speedup 1.20
Mo Scalar Integer MNb Loops to get

B[)% 1
Potential Speedup

FP Vectorised Nb Loops to get
BD% ..

Potential Speedup 121
Fully Vectorised Nb Loops to get

BD‘% .. 1
Potential Speedup

FP Arithmetic Only Nb Loops to get
8%

MAQAOQO Performance Analysis and Optimiz

FORMATION TOULOUSE (CALMIIP, 23 NOV 2022) ation Tool 33

Action: loop permutation

6.23x speedup Result: vectorization

Action: arch. specialization, loop unroll
17.2x speedup Result: vectorization widened to 512b +
FMA generation + loop unrolling

Loop perm. + march + unroll: 5.40 seconds

Action: vector data access alignment
Result: reduced cost for loads/stores +
more efficient code (less instructions...)

MAQAOQO Performance Analysis and Optimiz
FORMATION TOULOUSE (CALMIIP, 23 NOV 2022) ation Tool 34

Switch to the hidro handson folder

Load Intel compiler environment

Compile

MAQAOQO Performance Analysis and Optimiz
FORMATION TOULOUSE (CALMIIP, 23 NOV 2022) ation Tool 35

Iterative linear system solver
using the Gauss-Siedel
relaxation technique.

« Stencil » code

v

v

MAQAO Performance Analysis and Optimiz 36

FORMATION TOULOUSE (CALMIIP, 23 NOV 2022) ation Tool

MAQAOQO Performance Analysis and Optimiz

FORMATION TOULOUSE (CALMIIP, 23 NOV 2022) ation Tool

Loops Index

[Vectorization Ratio (%)

[1Speedup If Clean

[JSpeedup If FP Veciorized

Coverage (%) Time (s)
Speedup If Fully Vgctcrized

Loop 123 104-110
Loop 50 104-110
Loop 81 104-110
Loop 88 104-110
Loop 69 15-292
Loop 42 15-292
Loop 67 15-292
Loop 114 210-342
Loop 125 380-383
Loop 101 210-318
Loop 17 59-79
Loop 100 239-241
Loop 96 44-46
Loop 65 456-459
Loop 79 28-32
Loop 74 28-32
Loop 48 28-32
Loop 58 44-46
Loop 117 44-46
Loop 93 28-32
Loop 86 28-32
Loop 112 44-46
Loop 59 44-46
Loop 109 44-46
Loop 15 59-79
Loop 120 44-46
Loop 131 59-74

hydro_kO:kernel.c
hydro_kO:kernel.c
hydro_k0:kemel.c
hydro_kO:kernel.c

project

¢_densitySolver
c_velocitySalver
c_velocitySolver

hydro_k0:kemel.c
hydro_k0:kemel.c
hydro_kO:kernel.c
hydro_kO:kernel.c
hydro_k0:kemel.c

_kO:kemel.c
_kO:kemel.c
kO:kernel.c
kO:kemel.c

c_velocitySolver
c_densitySolver
c_velocitySolver
c_velocitySolver
project
¢_velocitySolver
setBoundry
c_velocitySalver
c_velocitySolver
¢_velocitySolver
c_velocitySolver
c_velocitySalver
¢_densitySolver
¢_densitySolver
c_velocitySolver
c_velocitySolver
c_velocitySolver
c_velocitySalver
c_densitySolver
¢_velocitySolver
setBoundry
c_velocitySalver
setBoundry

Assembly

/home/emoseret /MAQAD HANDSON/hydro//kernel.c: 184 - 110

104: for (j = 1; j <= grid _size; j++)

105:

106: x[build index(i, j, grid size)] = {a * { x[build index(i-1, j, grid size)] +
107: x[build index(i+1, j, grid size)] +
108: x[build index(i, j-1, grid_size)] +
109: x[build_index(i, j+1, grid_size)l) +
110: %8[build_index(i, j, grid size)}]) / c;

\ Advanced
LI Path[i s7/1 ok ;l
Coverage 31.13%
Function project
Source file and lines kernel.c:104-110
Module hydro_kO

The loop is defined in fhome/emoseret/MAQAQO_HANDSON/hydro/kernel.c:104-110.

The related source loop is not unrolled or unrolled with no peelitail loop.

gain | potential | hint | expert

Your loop is not vectorized. Only 6% of vector register length is used (average across all SSE/AVX instructions). By
vectorizin

our loop, you can lower the cost of an iteration from 4.00 to 0.25 cycles (16.00x speedup).

All SSE/AVX instructions are used in scalar version (process only one data element in vector registers). Since your
execution units are vector units, only a vectorized loop can use their full power.

« Try another compiler or updateftune your current one:

o use the vec-report option to understand why your loop was not vectorized. If "existence of vector
dependences", try the IVDEP directive. If, using IVDEP, "vectorization possible but seems inefficient”, try the
VECTOR ALWAYS directive.

+» Remove inter-iterations dependences from your loop and make it unit-stride:

o If your arrays have 2 or more dimensions, check whether elements are accessed contiguously and,
otherwise, try to permute loops accordingly: C storage order is row-major: for(i) for(j) afj][i] = b[j][i]; (slow, non
stride 1) => for(i) for(j) afi]lj] = b[i]}]; (fast, stride 1)

~ I vnnr lnnn etraame arrave nf etrictiirae (AnQY tnr tn nea etriictiirae nf arrave inetaard (SAAY farfit alil v —

The kernel routine, linearSolver, were inlined in caller functions. Moreover, there is direct mapping
between source and binary loop. Consequently the 4 hot loops are identical and only one need analysis.

FORMATION TOULOUSE (CALMIIP, 23 NOV 2022)

MAQAO Performance Analysis and Optimiz
ation Tool

38

he related source loop is not unrolled gr unrolled with no peel/tail loop.

gain | potential | hint | expert

Type of elements and instruction set

5 SSE or AVX instructions are processing arithmetic or math operations on single precision FP
elements in scalar mode (one at a time).

Matching between your loop (in the source code) and the binary loop
The binary loop is composed of 5 FP arithmetical operations:

¢ 4: addition or subtraction
s 1: multiply

The binary loop is loading 20 bytes (5 single precision FP elements). The binary loop is storing 4
bytes (1 single precision FP elements).

Arithmetic intensity

Arithmetic intensity is 0.21 FP operations per loaded or stored byte.

Unroll opportunity

Loop is potentially data access bound.

Unroll your loop if trip count is significantly higher than target unroll factor and if some data
references are common to consecutive iterations. This can be done manually. Or by combining
02/03 with the UNROLL (resp. UNROLL_AND_JAM) directive on top of the inner (resp.
surrounding) loop. You can enforce an unroll factor: e.g. UNROLL(4).

MAQAO Performance Analysis and Optimiz

FORMATION TOULOUSE (CALMIIP, 23 NOV 2022) ation Tool

Unrolling is generally a
good deal: fast to apply
and often provides gain.
Let's try to reuse data
references through
unrolling

39

»
»

LINEAR _SOLVER(i+0,j+0)

MAQAOQO Performance Analysis and Optimiz
FORMATION TOULOUSE (CALMIIP, 23 NOV 2022) ation Tool 40

v

LINEAR_SOLVER(i+0,j+0)
LINEAR SOLVER(i+1,j+0)

MAQAOQO Performance Analysis and Optimiz 41
FORMATION TOULOUSE (CALMIIP, 23 NOV 2022) ation TOO|

v

LINEAR_SOLVER(i+0,j+0)

LINEAR_SOLVER(i+1,j+0)

1 reuse

FORMATION TOULOUSE (CALMIIP, 23 NOV 2022)

MAQAOQO Performance Analysis and Optimiz
ation Tool

LINEAR _SOLVER(i+2,j+0)

42

v

LINEAR_SOLVER(i+0,j+0)
LINEAR_SOLVER(i+1,j+0)
LINEAR_SOLVER(i+2,j+0)
LINEAR _SOLVER(i+3,j+0)

M

2 reuses

MAQAOQO Performance Analysis and Optimiz 43
FORMATION TOULOUSE (CALMIIP, 23 NOV 2022) ation TOO|

v

LINEAR_SOLVER(i+0,j+0)
LINEAR_SOLVER(i+1,j+0)
LINEAR_SOLVER(i+2,j+0)
LINEAR_SOLVER(i+3,j+0)

LINEAR SOLVER(i+0,j+1)

4 reuses

MAQAOQO Performance Analysis and Optimiz

FORMATION TOULOUSE (CALMIIP, 23 NOV 2022) ation Tool

44

v

LINEAR SOLVER(i+0,j+0)
LINEAR SOLVER(i+1,j+0)
LINEAR SOLVER(i+2,j+0)
LINEAR SOLVER(i+3,j+0)

LINEAR SOLVER(i+0,j+1)
LINEAR SOLVER(i+1,j+1)

[reuses

MAQAOQO Performance Analysis and Optimiz 45
FORMATION TOULOUSE (CALMIIP, 23 NOV 2022) ation TOO|

v

LINEAR SOLVER(i+0,j+0)
LINEAR SOLVER(i+1,j+0)
LINEAR SOLVER(i+2,j+0)
LINEAR SOLVER(i+3,j+0)

LINEAR SOLVER(i+0,j+1)
LINEAR SOLVER(i+1,j+1)
LINEAR SOLVER(i+2,j+1)

10 reuses

MAQAOQO Performance Analysis and Optimiz
FORMATION TOULOUSE (CALMIIP, 23 NOV 2022) ation Tool 46

v

LINEAR SOLVER(i+0,j+0)
LINEAR SOLVER(i+1,j+0)
LINEAR SOLVER(i+2,j+0)
LINEAR SOLVER(i+3,j+0)

LINEAR SOLVER(i+0,j+1)
LINEAR SOLVER(i+1,j+1)
LINEAR SOLVER(i+2,j+1)
LINEAR SOLVER(i+3,j+1)

12 reuses

MAQAOQO Performance Analysis and Optimiz
FORMATION TOULOUSE (CALMIIP, 23 NOV 2022) ation Tool 47

v

LINEAR SOLVER(i+0-3,j+0)

LINEAR SOLVER(i+0-3,j+1)

LINEAR _SOLVER(i+O-
3,j+2)

LINEAR _SOLVER(i+O-
3,j+3)

32 reuses

MAQAOQO Performance Analysis and Optimiz

FORMATION TOULOUSE (CALMIIP, 23 NOV 2022) ation Tool

48

* For the x array, instead of 4x4x4 = 64 loads,
now only 32 (32 loads avoided by reuse)

* For the x0 array no reuse possible : 16 loads

 Total loads : 48 instead of 80

MAQAOQO Performance Analysis and Optimiz 49
FORMATION TOULOUSE (CALMIIP, 23 NOV 2022) ation TOO|

grid_size must now be multiple
of 4. Or loop control must be
adapted (much less readable)
to handle leftover iterations

MAQAO Performance Analysis and Optimiz

FORMATION TOULOUSE (CALMIIP, 23 NOV 2022) ation Tool

MAQAO Performance Analysis and Optimiz

FORMATION TOULOUSE (CALMIIP, 23 NOV 2022) ation Tool

[Loops Index

Coverage (%)
Speedup If Fully Vectorized

Loop 129

O Time (s)

15-176

[Veciorization Ratio (%)

hydro_k1:| kemel c

LUUp Ol Lo=170
Loop 43 15-292
Loop 70 15-292
Loop 68 15-292
Loop 117 210-342
Loop 104 210-318
Loop 66 380-383
Loop 72 368-371
Loop 86 368-371
Loop 84 380-383
Loop 103 239-241
Loop 123 44-46
Loop 64 456-459
Loop 77 28-32
Loop 109 226-230
Loop 120 44-46
Loop 110 226-230
Loop 115 44-46
Loop 17 59-79
Loop 91 28-32
Loop 127 59-79
Loop 112 44-46
Loop 82 28-32
Loop 99 44-46
Loop 49 28-32
Loop 59 44-46
Loop 96 28-32

hydro_| kl:kernel.d
hydro_k1:kernel.c
hydro_k1:kernel.c
hydro_k1:kernel.c
hydro_k1:kernel.c
hydro_k1:kernel.c
hydro_k1:kernel.c
hydro_k1:kernel.c
hydro_k1:kernel.c
hydro_k1:kernel.c
hydro_k1:kernel.c
hydro_k1:kernel.c
hydro_k1:kernel.c
hydro_k1:kernel.c
hydro_k1:kernel.c
hydro_k1:kernel.c
hydro_k1:kernel.c
hydro_k1:kernel.c
hydro_k1:kernel.c
hydro_k1:kernel.c
hydro_k1:kernel.c
hydro_k1:kernel.c
hydro_k1:kernel.c

[Speedup If Clean

IlnearSaIverl

. densnySoIver
c_velocitySolver
c_velocitySolver
c_velocitySolver
c_velocitySolver
c_velocitySolver
c_velocitySolver
c_velocitySolver
c_velocitySolver
c_velocitySaolver
c_velocitySolver
c_velocitySolver
c_velocitySolver
c_velocitySolver
c_velocitySalver
c_velocitySolver
c_velocitySolver

A velocitySolver

C_| de sitySolver
¢_den§itySolver
c_velodjtySolver

[JSpeedup If FP Vectorized

for {J = 1;] == grid_size-3; j+=4)

157: {
158: LINEARSOLVER (x, x0, a, inv ¢, grid size, i+0, j+0);
159: LINEARSOLVER (x, %0, a, inv ¢, grid size, i+0, j+1};
160: LINEARSOLVER (x, x0, a, inv_c, grid_size, i+@, J+2);
161: LINEARSOLVER (x, x0, a, inv_c, grid_size, i+0@, J+3);
162:
163: LINEARSOLVER (x, x0, a, inv ¢, grid size, i+1, j+0);
164: LINEARSOLVER (x, %0, a, inv ¢, grid size, i+1, j+1);
165: LINEARSOLVER (x, x0, a, inv_c, grid size, 1+1, Jj+2);
166: LINEARSOLVER (x, x0, a, inv_c, grid_size, i+1, J+3);
167:
168: LIMEARSOLVER (x, =0, a, inv_c, grid size, i+2, j+0);
169: LINEARSOLVER (x, x0, a, inv ¢, grid size, i+2, j+1);
170: LINEARSOLVER (x, x0, a, inv ¢, grid size, i+2, j+2);
171: LINEARSOLVER (x, x0, a, inv_c, grid_size, i+2, J+3);
172:
173: LIMEARSOLVER (x, %0, a, inv_c, grid size, i+3, j+0);
174: LINEARSOLVER (x, x0, a, inv ¢, grid size, i+3, j+1);
175: LINEARSOLVER (x, =0, a, inv ¢, grid size, i+3, j+2);
176: LINEARSOLVER (x, x0, a, inv_c, grid_size, i+3, J+3);
177: 1

;I Path |1_i' 11 ok ;I
Coverage 62.13 %
Function linearSolverl
Source file and lines kernel.c:15-176
Module hydro_k1

vectorizini

our 100|

[The loop is defined in /home/emoseret MAQAQ_HANDSON/hydro/kernel.c:15-176.

[The related source loop is not unrolled or unrolled with no peelfail loop.

Your loop is not vectorized. Only 6% of vector register length is used (average across all SSE/AVX instructions). By
, you can lower the cost of an iteration from 41.50 to 2.59 cycles (16.00x speedup).

All SSE/AVX instructions are used in scalar version {process only one data element in vector registers). Since your
execution units are vector units, only a vectorized loop can use their full power.

« Try another compiler or update/tune your current one:
o use the vec-report option to understand why your loop was not vectorized. If "existence of vector
dependences", iry the IVDEP directive. If, using IVDEP, "vectorization possible but seems inefficient", try the
VECTOR ALWAYS directive.
+ Remove inter-iterations dependences from your loop and make it unit-stride:
o If your arrays have 2 or more dimensions, check whether elements are accessed contiguously and,
otherwise, try to permute loops accordingly: C storage order is row-major: for(i) for(j) a[j][i] = b[j]i]; (slow, non
stride 1) => for(i) fnr(j) a[]|]] bil[]; (fast, stride 1)

If v Inan e nf etriictiiras (AnSY tns tn nea etruchiras af arrave i

A (SnldY farfi) alil v =

Remark: less calls were unrolled since linearSolver is now much more bigger

FORMATION TOULOUSE (CALMIIP, 23 NOV 2022)

MAQAO Performance Analysis and Optimiz

ation Tool

Matching between your loop (in the source code) and the binary loop

The binary loop is composed of 96 FP arithmetical operations:

e 64: addition or subtraction
e 32: multiply

The binary loop is Ioading 272 bytes (68 single precision FP elements). The binary loop is storing 64 bytes (16

single precision FP alements). \

\

4x4 Unrolling were applied Expected 48... But still better than 80

MAQAOQO Performance Analysis and Optimiz

FORMATION TOULOUSE (CALMIIP, 23 NOV 2022) ation Tool

53

Action: 4x4 unroll
Result: big loop body with mem reuse

3.18x speedup

A 4

MAQAOQO Performance Analysis and Optimiz
FORMATION TOULOUSE (CALMIIP, 23 NOV 2022) ation Tool 24 54

MAQAOQO Performance Analysis and Optimiz
FORMATION TOULOUSE (CALMIIP, 23 NOV 2022) ation Tool 99 55

Thanks for your attention

QUESTIONS ?

MAQAO Performance Analysis and Optimizati
on Tool

	MAQAO Performance Analysis and Optimization Tool
	Performance Analysis and Optimisation
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56

