
MAQAO
Performance Analysis and Optimization Framework

Performance Evaluation Team, University of
Versailles

http://maqao.exascale-computing.eu

http://maqao.exascale-computing.eu/

• Where is the application spending most
execution time and resources?

• Why is the application spending time there?
– Algorithm, implementation, runtime or hardware?

– Data access or computation?

• How much of an application can be optimised?
– What would the effort/gain ratio be?

• How to improve the situation?
– At which step(s) of the design process?

– What additional information is needed?

Performance Analysis and Optimisation

MAQAO Performance Analysis and Optimization Tool

Algorithm

Implementation

Source Code Parallelisation

Compilation

Execution

2

A Multifaceted Problem

• Pinpointing the performance bottlenecks

• Identifying the dominant issues
– Algorithms, implementation, parallelisation, …

• Making the best use of the machine features
– Complex multicore and manycore CPUs
– Complex memory hierarchy

• Finding the most rewarding issues to be fixed
– 40% total time, expected 10% speedup

• ➔ TOTAL IMPACT: 4% speedup
– 20% total time, expected 50% speedup

• ➔ TOTAL IMPACT: 10% speedup

=> Need for dedicated and complementary tools

MAQAO Performance Analysis and Optimization Tool

?

3

Motivating Example

• Code of a loop representing ~10% walltime

MAQAO Performance Analysis and Optimization Tool

1) High number of statements

2) Non-unit stride accesses

3) Indirect accesses

4) DIV/SQRT

5) Reductions

6) Variable number of iterations

Source code and associated issues:do j = ni + nvalue1, nato

nj1 = ndim3d*j + nc ; nj2 = nj1 + nvalue1 ; nj3 = nj2 + nvalue1

u1 = x11 – x(nj1) ; u2 = x12 – x(nj2) ; u3 = x13 – x(nj3)

rtest2 = u1*u1 + u2*u2 + u3*u3 ; cnij = eci*qEold(j)

rij = demi*(rvwi + rvwalc1(j))

drtest2 = cnij/(rtest2 + rij) ; drtest = sqrt(drtest2)

Eq = qq1*qq(j)*drtest

ntj = nti + ntype(j)

Ed = ceps(ntj)*drtest2*drtest2*drtest2

Eqc = Eqc + Eq ; Ephob = Ephob + Ed

gE = (c6*Ed + Eq)*drtest2 ; virt = virt + gE*rtest2

u1g = u1*gE ; u2g = u2*gE ; u3g = u3*gE

g1c = g1c –u1g ; g2c = g2c – u2g ; g3c = g3c –u3g

gr(nj1, thread_num) = gr(nj1, thread_num) + u1g

gr(nj2, thread_num) = gr(nj2, thread_num) + u2g

gr(nj3, thread_num) = gr(nj3, thread_num) + u3g

end do

6) Variable number of iterations

2) Non-unit stride accesses

4) DIV/SQRT

3) Indirect accesses

5) Reductions

2) Non-unit stride accesses

1
)

H
ig

h
 n

u
m

b
er

 o
f

st
at

em
en

ts

4

MAQAO:
Modular Assembly Quality Analyzer and Optimizer

• Objectives:
– Characterizing performance of HPC applications

– Guiding users through optimization process

– Estimating return of investment (R.O.I.)

• Characteristics:
– Modular tool offering complementary views

– Support for Intel x86-64, Xeon Phi and AArch64 (beta version)

– LGPL3 Open Source software

– Developed at UVSQ since 2004

– Binary release available as static executable

MAQAO Performance Analysis and Optimization Tool
5

Website & resources

• MAQAO website: maqao.exascale-computing.eu
– Mirror: www.maqao.org

• Documentation: maqao.exascale-computing.eu/documentation.html

– Tutorials for ONE View, LProf and CQA

– Lua API documentation

• Latest release: maqao.exascale-computing.eu/downloads.html

– Binary releases (2-3 per year)

– Core sources

• Publications: maqao.exascale-computing.eu/publications.html

MAQAO Performance Analysis and Optimization Tool
6

https://maqao.exascale-computing.eu/
http://www.maqao.org/
http://maqao.exascale-computing.eu/documentation.html
https://maqao.exascale-computing.eu/download.html
http://maqao.exascale-computing.eu/publications.html

Success stories:
Optimisation of Industrial and Academic HPC Applications

• QMC=CHEM (IRSAMC)
– Quantum chemistry
– Speedup: > 3x

• Moved invocation of function with identical parameters out of loop body

• Yales2 (CORIA)
– Computational fluid dynamics
– Speedup: up to 2,8x

• Removed double structure indirections

• Polaris (CEA)
– Molecular dynamics
– Speedup: 1,5x – 1,7x

• Enforced loop vectorisation through compiler directives

• AVBP (CERFACS)
– Computational fluid dynamics
– Speedup: 1,08x – 1,17x

• Replaced division with multiplication by reciprocal
• Complete unrolling of loops with small number of iterations

• Ongoing effort
– TREX CoE project codes
– CEA DAM codes

MAQAO Performance Analysis and Optimization Tool
7

Partnerships

• MAQAO was funded by UVSQ, Intel (2005-2020) and CEA (French
department of energy) through Exascale Computing Research (ECR)
and the French Ministry of Industry through various FUI/ITEA
projects (H4H, COLOC, PerfCloud, ELCI, MB3, etc...)

• Provides core technology to be integrated with other tools:
– TAU performance tools with MADRAS patcher through MIL (MAQAO

Instrumentation Language)
– ATOS bullxprof with MADRAS through MIL
– Intel Advisor
– INRIA Bordeaux HWLOC

• PeXL ISV also contributes to MAQAO:
– Commercial performance optimization expertise
– Training and software development
– www.pexl.eu

MAQAO Performance Analysis and Optimization Tool
8

http://www.pexl.eu/

MAQAO Team and Collaborators

• MAQAO Team
– William Jalby, Prof.
– Cédric Valensi, Ph.D.
– Emmanuel Oseret, Ph.D.
– Mathieu Tribalat, M.Sc.Eng
– Salah Ibn Amar, M.Sc.Eng
– Hugo Bolloré , M.Sc.Eng
– Kévin Camus, Eng.
– Aurélien Delval, Eng.
– Max Hoffer, Eng.

• Collaborators
– David J. Kuck, Prof. (Intel US)
– Andrés S. Charif-Rubial, Ph.D. (start-up)
– Eric Petit, Ph.D. (Intel US)
– Pablo de Oliveira, Ph.D. (UVSQ)
– David Wong, Ph.D. (Intel US)
– Othman Bouizi, Ph.D. (Intel US)

• Past Collaborators or Team members
– Denis Barthou, Prof. (Univ. Bordeaux)
– Jean-Thomas Acquaviva, Ph.D. (DDN)
– Stéphane Zuckerman, Ph.D. (M. Conf

ENSEA)
– Julien Jaeger, Ph.D. (CEA DAM)
– Souad Koliaï, Ph.D. (CELOXICA)
– Zakaria Bendifallah, Ph.D. (ATOS)
– Tipp Moseley, Ph.D. (Google)
– Jean-Christophe Beyler, Ph.D. (Google)
– Jean-Baptiste Le Reste , M.Sc.Eng

(start-up)
– Sylvain Henry, Ph.D. (start-up)
– José Noudohouenou, Ph.D. (AMD)
– Aleksandre Vardoshvili , M.Sc.Eng
– Romain Pillot, Eng
– Youenn Lebras, Ph.D. (start-up)

MAQAO Performance Analysis and Optimization Tool
9

Analysis at Binary Level

• Advantages of binary analysis: What You Analyse Is What You Run

• Issues binary analysis addresses:

– Compiler optimizations increase the distance between the executed code
and the source code

– Source code instrumentation may prevent the compiler from applying
certain transformations

• Main steps:

– Construct high level structures (CFG, DDG, SSA, …)

– Relate the analyses to source code using debug information

• A single source loop can be compiled as multiple assembly loops

• Affecting unique identifiers to loops

MAQAO Performance Analysis and Optimization Tool

Loop
L255@file.c

Loop 1 Loop 2 Loop 3

Loop 4

Loop 5

Peel/Prolog

Main

Tail/Epilog

ASM

Source

10

MAQAO Main Features

• Binary layer
– Builds internal representation from binary

– Allows patching through binary rewriting

• Profiling
– LProf: Lightweight sampling-based Profiler

– VProf: Instrumentation-based Value Profiler

• Static analysis
– CQA (Code Quality Analyzer): Evaluates the quality of the binary code and

offers hints for improving it

– UFS (Uops Flow Simulator): Cycle-accurate CPU engine simulator

• Dynamic analysis
– DECAN (DECremental Analyzer): Modifies the application to evaluate the

impact of groups of instructions on performance

• Performance view aggregation module
– ONE View: Invokes the modules and produces reports aggregating their

results

MAQAO Performance Analysis and Optimization Tool
11

MAQAO Main Structure

MAQAO Performance Analysis and Optimization Tool

Disassembly

Application

Analysis

Lua API

Patching

LProf

CQA
Internal

Representation

+ Sampling

+ Machine

model

ONE View

Reports
Loop 42 50%
vectorised
Potential x1.2
speedup

VProf

DECAN

12

MAQAO Methodology

• Decision tree

MAQAO Performance Analysis and Optimization Tool

Profiling

Loops of interest

Analysis

CPU oriented

Code Quality Analysis

Value Profiling

Differential analysis

Memory oriented

Memory behaviour
characterization

Differential analysis

13

SIMD/Vectorization/Data Parallelism

• Scalar pattern (C): a[i] = b[i] + c[i]

• Vector pattern (FORTRAN): a(i, i + 8) = b(i, i + 8) + c(i, i + 8)

• Benefits : increases memory bandwidth and IPC

• Implementations:
– x86 : SSE, AVX, AVX512

– ARM : Neon, SVE

• FMA/MAC: (the core operation of LinAlg/DSP algorithms)
– Fused-Multiply-Add

– Multiply-Accumulate

Scalar addition FMA / MAC Vector addition

14
MAQAO Performance Analysis and Optimization Tool

Compiler optimisations

• Compiler flags:
– Loop unrolling: -funroll-loops

• Reduce branches

• Fill the pipeline (more instructions per iteration)

• Increases memory bandwidth and IPC

– Function inlining: -finline-functions

– Vectorization: -ftree-vectorize, -ftree-slp-vectorize, ...

– Target micro-architectures: -march or -mtune or -xHOST

• Compiler directives:
– OpenMP directives: #pragma omp simd, #pragma omp parallel for, …

– Intel compiler specific: #pragma simd, #pragma unroll, #pragma inline, …

• Compiler/language keywords/features:
– Using restrict for pointers aliasing in C/C++

– Using inline for function inlining in C

– Using array sections in FORTRAN

15
MAQAO Performance Analysis and Optimization Tool

Memory and caches

• Computations are, in general, faster than memory accesses

• Alignment/Contiguity of memory (x86) : posix_memalign,
aligned_alloc, ...

• Are caches (L1, L2, L3) used properly?

• Memory performance → Maximum bandwidth

16
MAQAO Performance Analysis and Optimization Tool

• Goal: Localization of application
hotspots

• Features:
– Lightweight
– Sampling based
– Access to hardware counters
– Analysis at function and loop

granularity

• Strengths:
– Non intrusive: No recompilation

necessary
– Low overhead
– Agnostic with regard to parallel

runtime

MAQAO LProf: Lightweight Profiler

MAQAO Performance Analysis and Optimization Tool
17

• Goal: Assist developers in improving
code performance

• Features:
– Static analysis: no execution of the

application
– Allows cross-analysis of/on multiple

architectures
– Evaluate the quality of compiler

generated code
– Proposes hints and workarounds to

improve quality / performance
– Loop centric

• In HPC loops cover most of the
processing time

– Targets compute-bound codes

MAQAO CQA: Code Quality Analyzer

MAQAO Performance Analysis and Optimization Tool
18

MAQAO CQA Main Concepts

• Applications only exploit at best 5% to 10% of the peak
performance

• Main elements of analysis:
– Peak performance

– Execution pipeline

– Resources/Functional units

• Key performance levers for core level efficiency:
– Vectorisation

– Avoiding high latency instructions if possible (e.g. DIV/SQRT)

– Guiding the compiler code optimisation

– Reorganizing memory and data structures layout

MAQAO Performance Analysis and Optimization Tool

Same instruction – Same cost

Process up to
8X (SP) data

19

MAQAO CQA Guiding the compiler and hints

• Compiler can be driven using flags, pragmas and keywords:
– Ensuring full use of architecture capabilities (e.g. using flag -xHost on

AVX capable machines)

– Forcing optimization (unrolling, vectorization, alignment…)

– Bypassing conservative behaviour when possible (e.g., 1/X precision)

• Hints for implementation changes
– Improve data access patterns

• Memory alignment

• Loop interchange

• Change loop stride

• Reshaping arrays of structures

– Avoid instructions with high latency (SQRT, DIV, GATHER, SCATTER, …)

MAQAO Performance Analysis and Optimization Tool
20

• Ex: vectorized SSE code on AVX
machine

• Compiler: “LOOP WAS VECTORIZED”

• In reality 50% vectorization speedup
loss

• CQA:
• vectorization ratio: 100% (“all

instructions vectorized”)

• vec. efficiency ratio: 50% (“but
using only half vector width”)

• hint: “recompile with –xHost” (on
Intel compilers)

MAQAO CQA Advanced Features
Vector Efficiency

MAQAO Performance Analysis and Optimization Tool

128 bits
vectorized:
Vec. ratio = 100%

ADDPD (xmm)

MULPD (xmm)

etc…

256 bits
vectorized:
Vec. ratio = 100%

VADDPD (ymm)

VMULPD (ymm)

etc…

50% 100%

21

MAQAO CQA Application to Motivating Example

MAQAO Performance Analysis and Optimization Tool

1) High number of statements

2) Non-unit stride accesses

3) Indirect accesses

4) DIV/SQRT

5) Reductions

6) Variable number of iterations

7) Vector vs scalar

Issues identified by CQA

CQA can detect and provide hints to

resolve most of the identified issues:
do j = ni + nvalue1, nato

nj1 = ndim3d*j + nc ; nj2 = nj1 + nvalue1 ; nj3 = nj2 + nvalue1

u1 = x11 – x(nj1) ; u2 = x12 – x(nj2) ; u3 = x13 – x(nj3)

rtest2 = u1*u1 + u2*u2 + u3*u3 ; cnij = eci*qEold(j)

rij = demi*(rvwi + rvwalc1(j))

drtest2 = cnij/(rtest2 + rij) ; drtest = sqrt(drtest2)

Eq = qq1*qq(j)*drtest

ntj = nti + ntype(j)

Ed = ceps(ntj)*drtest2*drtest2*drtest2

Eqc = Eqc + Eq ; Ephob = Ephob + Ed

gE = (c6*Ed + Eq)*drtest2 ; virt = virt + gE*rtest2

u1g = u1*gE ; u2g = u2*gE ; u3g = u3*gE

g1c = g1c –u1g ; g2c = g2c – u2g ; g3c = g3c –u3g

gr(nj1, thread_num) = gr(nj1, thread_num) + u1g

gr(nj2, thread_num) = gr(nj2, thread_num) + u2g

gr(nj3, thread_num) = gr(nj3, thread_num) + u3g

end do

6) Variable number of iterations

2) Non-unit stride accesses

4) DIV/SQRT

3) Indirect accesses

5) Reductions

2) Non-unit stride accesses

1
)

H
ig

h
 n

u
m

b
er

 o
f

st
at

em
en

ts

7
)

V
ec

to
r

vs
 s

ca
la

r

22

MAQAO CQA: Code Quality Analyzer
Application to motivating example

MAQAO Performance Analysis and Optimization Tool

1) High number of statements

2) Non-unit stride accesses

3) Indirect accesses

4) DIV/SQRT

5) Reductions

6) Variable number of iterations

7) Vector vs scalar

23

MAQAO ONE View: Performance View Aggregator

• Goal: Automating the whole analysis process
– Invoke multiple MAQAO modules

– Generate aggregated performance views

• Reports in HTML or XLS format

MAQAO Performance Analysis and Optimization Tool

MAQAO analysis modules

ONE-View

Configuration
file

Application

LProf VProf DECAN CQA

Reports

24

• Main steps:
– Invokes LProf to identify hotspots

– Invokes CQA and other modules on
loop hotspots

• Available results:
– Speedup predictions

– Global code quality metrics

– Hints for improving performance

– Detailed analyses results

– Parallel efficiency analysis

MAQAO ONE View: Performance View Aggregator

MAQAO Performance Analysis and Optimization Tool
25

ONE View Reports Levels

• ONE VIEW ONE
– Requires a single run of the application

– Profiling of the application using LProf

– Static analysis using CQA

• ONE VIEW TWO (includes analyses from report ONE)
– Requires 3 or 4 runs on average

– Value profiling using VProf to identify loop iteration count

– Decremental analysis for L1 projection using DECAN

• ONE VIEW THREE (includes analyses from report TWO)
– Requires 20 to 30 runs

– Decremental analyses using all DECAN variants

– Collects hardware performance events

• Comparison mode
– Comparison of multiple runs (iso-binary or iso-source)

– Allows to evaluate scalability or compare performance across different
datasets, compilers, or hardware platforms

MAQAO Performance Analysis and Optimization Tool
26

Analysing an application with MAQAO

• ONE View execution

• Provide all parameters necessary for executing the application
– Parameters can be passed on the command line or as a configuration

file

– Parameters include binary name, MPI commands, dataset directory, …

• Analyses can be tweaked if necessary

• ONE View can reuse an existing experiment directory to
perform further analyses

• Results available in HTML format by default
– XLS spreadsheets and textual output generation are also available

• Online help is available:

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL

$ maqao oneview --create-report=one --executable=./myexe --mpi_command="mpirun -n 16"

$ maqao oneview --create-report=one --config=my_config.lua"

$ maqao oneview --help

27

$ maqao oneview -R1 ./myexe

Analysing an application with MAQAO

MAQAO modules can be invoked separately for advanced
analyses

• LProf
– Profiling

– Display functions profile

– Displaying the results from a ONE View run

• CQA

Online help is available:

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL

$ maqao lprof xp=exp_dir --mpi-command="mpirun -n 16" -- ./myexe

$ maqao lprof xp=exp_dir –df

$ maqao lprof xp=oneview_xp_dir/lprof_npsu –df

$ maqao cqa loop=42 myexe

$ maqao cqa --help

$ maqao lprof --help

28

QUESTIONS ?
Thanks for your attention

MAQAO Performance Analysis and Optimization Tool 29

NAVIGATING ONE VIEW REPORTS

MAQAO Performance Analysis and Optimization Tool 30

• Experiment summary
– Characteristics of the machine

where the experiment took
place

• Global metrics
– General quality metrics derived

from MAQAO analyses
– Global speedup predictions

• Speedup prediction
depending on the number
of vectorised loops

• Ordered speedups to
identify the loops to
optimise in priority

MAQAO ONE View Global Summary

MAQAO Performance Analysis and Optimization Tool
31

ONE View Global Metrics

• Global metrics
– General quality metrics derived from MAQAO analyses

– Global speedup predictions

• Potential speedups
– Speedup prediction depending on the number of optimised loops

– Ordered speedups to identify the loops to optimise in priority

• 𝐺𝑙𝑜𝑏𝑎𝑙 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = σ𝑙𝑜𝑜𝑝𝑠 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 ∗ 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑠𝑝𝑒𝑒𝑑𝑢𝑝

• LProf provides coverage of the loops

• CQA and DECAN provide speedup estimation for loops
– Speedup if loop vectorised or without address computation

– All data in L1 cache

MAQAO Performance Analysis and Optimization Tool
32

Identifying hotspots

• Exclusive coverage

• Load balancing across
threads

• Loops nests by functions

MAQAO ONE View: Functions Profiling

MAQAO Performance Analysis and Optimization Tool

Single

Outermost

Inbetween

Inbetween

Innermost

33

MAQAO ONE View Loop Profiling Summary

• Identifying loop hotspots

• Vectorisation information

• Potential speedups by optimisation
– Clean: Removing address computations

– FP Vectorised: Vectorising floating-point computations

– Fully Vectorised: Vectorising floating-point computations and memory
accesses

MAQAO Performance Analysis and Optimization Tool
34

MAQAO ONE View Scalability Reports
Application View

• Coverage per category
– Comparison of categories for each run

• Coverage per parallel efficiency

– 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑇𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙∗𝑁𝑡ℎ𝑟𝑒𝑎𝑑𝑠

• Distinguishing functions only represented in parallel or sequential

– Displays efficiency by coverage

MAQAO Performance Analysis and Optimization Tool
35

BACKUP SLIDES

MAQAO Performance Analysis and Optimization Tool 36

MAQAO History

• 2004: Begun development
– Focusing on Intel Itanium

architecture

– Analysis of assembly files

• 2006: Transition to Intel x86-64

• 2009: Binary analysis support
– First version of decremental

analysis

• 2012: Support of KNC
architecture

• 2014: Profiling features

• 2015: First version of ONE View

• 2017: Prototype support of ARM
architecture

• 2018: Scalability mode

• 2020: Comparison mode

• 2022: Support of ARM (beta)
MAQAO Performance Analysis and Optimization Tool

37

