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• Where is the application spending most 
execution time and resources?

• Why is the application spending time there?
– Algorithm, implementation, runtime or hardware?

– Data access or computation?

• How much of an application can be optimised?
– What would the effort/gain ratio be?

• How to improve the situation?
– At which step(s) of the design process?

– What additional information is needed?

Performance Analysis and Optimisation

MAQAO Performance Analysis and Optimization Tool

Algorithm

Implementation

Source Code Parallelisation

Compilation

Execution
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A Multifaceted Problem

• Pinpointing the performance bottlenecks

• Identifying the dominant issues
– Algorithms, implementation, parallelisation, …

• Making the best use of the machine features
– Complex multicore and manycore CPUs
– Complex memory hierarchy

• Finding the most rewarding issues to be fixed
– 40% total time, expected 10% speedup

• ➔ TOTAL IMPACT: 4% speedup
– 20% total time, expected 50% speedup

• ➔ TOTAL IMPACT: 10% speedup

=> Need for dedicated and complementary tools

MAQAO Performance Analysis and Optimization Tool

?
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Motivating Example

• Code of a loop representing ~10% walltime

MAQAO Performance Analysis and Optimization Tool

1) High number of statements

2) Non-unit stride accesses

3) Indirect accesses

4) DIV/SQRT

5) Reductions

6) Variable number of iterations

Source code and associated issues:do j = ni + nvalue1, nato

nj1 = ndim3d*j + nc ; nj2 = nj1 + nvalue1 ; nj3 = nj2 + nvalue1

u1 = x11 – x(nj1) ; u2 = x12 – x(nj2) ; u3 = x13 – x(nj3)

rtest2 = u1*u1 + u2*u2 + u3*u3 ; cnij = eci*qEold(j)

rij = demi*(rvwi + rvwalc1(j))

drtest2 = cnij/(rtest2 + rij) ; drtest = sqrt(drtest2)

Eq = qq1*qq(j)*drtest

ntj = nti + ntype(j)

Ed = ceps(ntj)*drtest2*drtest2*drtest2

Eqc = Eqc + Eq ; Ephob = Ephob + Ed

gE = (c6*Ed + Eq)*drtest2 ; virt = virt + gE*rtest2

u1g = u1*gE ; u2g = u2*gE ; u3g = u3*gE

g1c = g1c –u1g ; g2c = g2c – u2g ; g3c = g3c –u3g

gr(nj1, thread_num) = gr(nj1, thread_num) + u1g

gr(nj2, thread_num) = gr(nj2, thread_num) + u2g

gr(nj3, thread_num) = gr(nj3, thread_num) + u3g

end do

6) Variable number of iterations

2) Non-unit stride accesses

4) DIV/SQRT

3) Indirect accesses

5) Reductions

2) Non-unit stride accesses
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MAQAO:
Modular Assembly Quality Analyzer and Optimizer

• Objectives:
– Characterizing performance of HPC applications

– Guiding users through optimization process

– Estimating return of investment (R.O.I.)

• Characteristics:
– Modular tool offering complementary views

– Support for Intel x86-64, Xeon Phi and AArch64 (beta version)

– LGPL3 Open Source software

– Developed at UVSQ since 2004

– Binary release available as static executable

MAQAO Performance Analysis and Optimization Tool
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Website & resources

• MAQAO website: maqao.exascale-computing.eu
– Mirror: www.maqao.org

• Documentation: maqao.exascale-computing.eu/documentation.html

– Tutorials for ONE View, LProf and CQA

– Lua API documentation

• Latest release: maqao.exascale-computing.eu/downloads.html

– Binary releases (2-3 per year)

– Core sources

• Publications: maqao.exascale-computing.eu/publications.html

MAQAO Performance Analysis and Optimization Tool
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Success stories:
Optimisation of Industrial and Academic HPC Applications

• QMC=CHEM (IRSAMC)
– Quantum chemistry
– Speedup: > 3x

• Moved invocation of function with identical parameters out of loop body 

• Yales2 (CORIA)
– Computational fluid dynamics
– Speedup: up to 2,8x

• Removed double structure indirections 

• Polaris (CEA)
– Molecular dynamics
– Speedup: 1,5x – 1,7x

• Enforced loop vectorisation through compiler directives

• AVBP (CERFACS)
– Computational fluid dynamics 
– Speedup: 1,08x – 1,17x

• Replaced division with multiplication by reciprocal
• Complete unrolling of loops with small number of iterations

• Ongoing effort
– TREX CoE project codes
– CEA DAM codes

MAQAO Performance Analysis and Optimization Tool
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Partnerships

• MAQAO was funded by UVSQ, Intel (2005-2020) and CEA (French 
department of energy) through Exascale Computing Research (ECR) 
and the French Ministry of Industry through various FUI/ITEA 
projects (H4H, COLOC, PerfCloud, ELCI, MB3, etc...)

• Provides core technology to be integrated with other tools:
– TAU performance tools with MADRAS patcher through MIL (MAQAO 

Instrumentation Language) 
– ATOS bullxprof with MADRAS through MIL
– Intel Advisor
– INRIA Bordeaux HWLOC

• PeXL ISV also contributes to MAQAO:
– Commercial performance optimization expertise
– Training and software development
– www.pexl.eu

MAQAO Performance Analysis and Optimization Tool
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MAQAO Team and Collaborators

• MAQAO Team
– William Jalby, Prof. 
– Cédric Valensi, Ph.D.
– Emmanuel Oseret, Ph.D.
– Mathieu Tribalat, M.Sc.Eng
– Salah Ibn Amar, M.Sc.Eng
– Hugo Bolloré , M.Sc.Eng
– Kévin Camus, Eng.
– Aurélien Delval, Eng.
– Max Hoffer, Eng.

• Collaborators
– David J. Kuck, Prof. (Intel US)
– Andrés S. Charif-Rubial, Ph.D. (start-up)
– Eric Petit, Ph.D. (Intel US)
– Pablo de Oliveira, Ph.D. (UVSQ)
– David Wong, Ph.D. (Intel US)
– Othman Bouizi, Ph.D. (Intel US)

• Past Collaborators or Team members
– Denis Barthou, Prof. (Univ. Bordeaux)
– Jean-Thomas Acquaviva, Ph.D. (DDN)
– Stéphane Zuckerman, Ph.D. (M. Conf 

ENSEA)
– Julien Jaeger, Ph.D. (CEA DAM)
– Souad Koliaï, Ph.D. (CELOXICA)
– Zakaria Bendifallah, Ph.D. (ATOS)
– Tipp Moseley, Ph.D. (Google)
– Jean-Christophe Beyler, Ph.D. (Google)
– Jean-Baptiste Le Reste , M.Sc.Eng

(start-up)
– Sylvain Henry, Ph.D. (start-up)
– José Noudohouenou, Ph.D. (AMD)
– Aleksandre Vardoshvili , M.Sc.Eng
– Romain Pillot, Eng
– Youenn Lebras, Ph.D. (start-up)

MAQAO Performance Analysis and Optimization Tool
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Analysis at Binary Level

• Advantages of binary analysis: What You Analyse Is What You Run

• Issues binary analysis addresses:

– Compiler optimizations increase the distance between the executed code 
and the source code

– Source code instrumentation may prevent the compiler from applying 
certain transformations

• Main steps:

– Construct high level structures (CFG, DDG, SSA, …)

– Relate the analyses to source code using debug information

• A single source loop can be compiled as multiple assembly loops

• Affecting unique identifiers to loops

MAQAO Performance Analysis and Optimization Tool

Loop
L255@file.c

Loop 1 Loop 2 Loop 3

Loop 4

Loop 5

Peel/Prolog

Main

Tail/Epilog

ASM

Source
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MAQAO Main Features

• Binary layer
– Builds internal representation from binary

– Allows patching through binary rewriting

• Profiling
– LProf: Lightweight sampling-based Profiler

– VProf: Instrumentation-based Value Profiler

• Static analysis
– CQA (Code Quality Analyzer): Evaluates the quality of the binary code and 

offers hints for improving it

– UFS (Uops Flow Simulator): Cycle-accurate CPU engine simulator

• Dynamic analysis
– DECAN (DECremental Analyzer): Modifies the application to evaluate the 

impact of groups of instructions on performance

• Performance view aggregation module
– ONE View: Invokes the modules and produces reports aggregating their 

results

MAQAO Performance Analysis and Optimization Tool
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MAQAO Main Structure

MAQAO Performance Analysis and Optimization Tool

Disassembly

Application

Analysis

Lua API

Patching

LProf

CQA
Internal 

Representation

+ Sampling

+ Machine 

model

ONE View

Reports
Loop 42 50%
vectorised
Potential x1.2
speedup

VProf

DECAN
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MAQAO Methodology

• Decision tree

MAQAO Performance Analysis and Optimization Tool

Profiling

Loops of interest

Analysis

CPU oriented

Code Quality Analysis

Value Profiling

Differential analysis

Memory oriented

Memory behaviour 
characterization

Differential analysis
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SIMD/Vectorization/Data Parallelism

• Scalar pattern (C): a[i] = b[i] + c[i]

• Vector pattern (FORTRAN): a(i, i + 8) = b(i, i + 8) + c(i, i + 8)

• Benefits : increases memory bandwidth and IPC

• Implementations:
– x86 : SSE, AVX, AVX512

– ARM : Neon, SVE

• FMA/MAC:  (the core operation of LinAlg/DSP algorithms)
– Fused-Multiply-Add

– Multiply-Accumulate

Scalar addition FMA / MAC Vector addition

14
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Compiler optimisations

• Compiler flags:
– Loop unrolling: -funroll-loops

• Reduce branches

• Fill the pipeline (more instructions per iteration)

• Increases memory bandwidth and IPC

– Function inlining: -finline-functions

– Vectorization: -ftree-vectorize, -ftree-slp-vectorize, ...

– Target micro-architectures: -march or -mtune or -xHOST

• Compiler directives:
– OpenMP directives: #pragma omp simd, #pragma omp parallel for, …

– Intel compiler specific: #pragma simd, #pragma unroll, #pragma inline, …

• Compiler/language keywords/features:
– Using restrict for pointers aliasing in C/C++

– Using inline for function inlining in C

– Using array sections in FORTRAN

15
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Memory and caches

• Computations are, in general, faster than memory accesses

• Alignment/Contiguity of memory (x86) : posix_memalign, 
aligned_alloc, ...

• Are caches (L1, L2, L3) used properly?

• Memory performance → Maximum bandwidth

16
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• Goal: Localization of application 
hotspots

• Features:
– Lightweight 
– Sampling based
– Access to hardware counters
– Analysis at function and loop 

granularity

• Strengths:
– Non intrusive: No recompilation 

necessary
– Low overhead
– Agnostic with regard to parallel 

runtime

MAQAO LProf: Lightweight Profiler

MAQAO Performance Analysis and Optimization Tool
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• Goal: Assist developers in improving 
code performance

• Features:
– Static analysis: no execution of the 

application
– Allows cross-analysis of/on multiple 

architectures
– Evaluate the quality of compiler 

generated code
– Proposes hints and workarounds to 

improve quality / performance
– Loop centric

• In HPC loops cover most of the 
processing time

– Targets compute-bound codes 

MAQAO CQA: Code Quality Analyzer

MAQAO Performance Analysis and Optimization Tool
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MAQAO CQA Main Concepts

• Applications only exploit at best 5% to 10% of the peak 
performance

• Main elements of analysis:
– Peak performance

– Execution pipeline

– Resources/Functional units

• Key performance levers for core level efficiency:
– Vectorisation

– Avoiding high latency instructions if possible (e.g. DIV/SQRT)

– Guiding the compiler code optimisation

– Reorganizing memory and data structures layout

MAQAO Performance Analysis and Optimization Tool

Same instruction – Same cost

Process up to 
8X (SP) data
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MAQAO CQA Guiding the compiler and hints 

• Compiler can be driven using flags, pragmas and keywords:
– Ensuring full use of architecture capabilities (e.g. using flag -xHost on 

AVX capable machines)

– Forcing optimization (unrolling, vectorization, alignment…)

– Bypassing conservative behaviour when possible (e.g., 1/X precision)

• Hints for implementation changes
– Improve data access patterns

• Memory alignment

• Loop interchange

• Change loop stride

• Reshaping arrays of structures

– Avoid instructions with high latency (SQRT, DIV, GATHER, SCATTER, …)

MAQAO Performance Analysis and Optimization Tool
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• Ex: vectorized SSE code on AVX 
machine

• Compiler: “LOOP WAS VECTORIZED”

• In reality 50% vectorization speedup 
loss

• CQA:
• vectorization ratio: 100% (“all 

instructions vectorized”)

• vec. efficiency ratio: 50% (“but 
using only half vector width”)

• hint: “recompile with –xHost” (on 
Intel compilers)

MAQAO CQA Advanced Features 
Vector Efficiency

MAQAO Performance Analysis and Optimization Tool

128 bits 
vectorized:
Vec. ratio = 100%

ADDPD (xmm)

MULPD (xmm)

etc…

256 bits 
vectorized:
Vec. ratio = 100%

VADDPD (ymm)

VMULPD (ymm)

etc…

50% 100%
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MAQAO CQA Application to Motivating Example

MAQAO Performance Analysis and Optimization Tool

1) High number of statements

2) Non-unit stride accesses

3) Indirect accesses

4) DIV/SQRT

5) Reductions

6) Variable number of iterations

7) Vector vs scalar

Issues identified by CQA 

CQA can detect and provide hints to 

resolve most of the identified issues:
do j = ni + nvalue1, nato

nj1 = ndim3d*j + nc ; nj2 = nj1 + nvalue1 ; nj3 = nj2 + nvalue1

u1 = x11 – x(nj1) ; u2 = x12 – x(nj2) ; u3 = x13 – x(nj3)

rtest2 = u1*u1 + u2*u2 + u3*u3 ; cnij = eci*qEold(j)

rij = demi*(rvwi + rvwalc1(j))

drtest2 = cnij/(rtest2 + rij) ; drtest = sqrt(drtest2)

Eq = qq1*qq(j)*drtest

ntj = nti + ntype(j)

Ed = ceps(ntj)*drtest2*drtest2*drtest2

Eqc = Eqc + Eq ; Ephob = Ephob + Ed

gE = (c6*Ed + Eq)*drtest2 ; virt = virt + gE*rtest2

u1g = u1*gE ; u2g = u2*gE ; u3g = u3*gE

g1c = g1c –u1g ; g2c = g2c – u2g ; g3c = g3c –u3g

gr(nj1, thread_num) = gr(nj1, thread_num) + u1g

gr(nj2, thread_num) = gr(nj2, thread_num) + u2g

gr(nj3, thread_num) = gr(nj3, thread_num) + u3g

end do

6) Variable number of iterations

2) Non-unit stride accesses

4) DIV/SQRT

3) Indirect accesses

5) Reductions

2) Non-unit stride accesses
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MAQAO CQA: Code Quality Analyzer
Application to motivating example

MAQAO Performance Analysis and Optimization Tool

1) High number of statements

2) Non-unit stride accesses

3) Indirect accesses

4) DIV/SQRT

5) Reductions

6) Variable number of iterations

7) Vector vs scalar
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MAQAO ONE View: Performance View Aggregator

• Goal: Automating the whole analysis process
– Invoke multiple MAQAO modules

– Generate aggregated performance views 

• Reports in HTML or XLS format

MAQAO Performance Analysis and Optimization Tool

MAQAO analysis modules

ONE-View

Configuration 
file

Application

LProf VProf DECAN CQA

Reports
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• Main steps:
– Invokes LProf to identify hotspots

– Invokes CQA and other modules on 
loop hotspots

• Available results:
– Speedup predictions

– Global code quality metrics 

– Hints for improving performance

– Detailed analyses results

– Parallel efficiency analysis

MAQAO ONE View: Performance View Aggregator

MAQAO Performance Analysis and Optimization Tool
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ONE View Reports Levels

• ONE VIEW ONE
– Requires a single run of the application

– Profiling of the application using LProf

– Static analysis using CQA

• ONE VIEW TWO (includes analyses from report ONE)
– Requires 3 or 4 runs on average

– Value profiling using VProf to identify loop iteration count

– Decremental analysis for L1 projection using DECAN

• ONE VIEW THREE (includes analyses from report TWO)
– Requires 20 to 30 runs 

– Decremental analyses using all DECAN variants 

– Collects hardware performance events

• Comparison mode
– Comparison of multiple runs (iso-binary or iso-source)

– Allows to evaluate scalability or compare performance across different 
datasets, compilers, or hardware platforms

MAQAO Performance Analysis and Optimization Tool
26



Analysing an application with MAQAO

• ONE View execution

• Provide all parameters necessary for executing the application
– Parameters can be passed on the command line or as a configuration 

file

– Parameters include binary name, MPI commands, dataset directory, …

• Analyses can be tweaked if necessary

• ONE View can reuse an existing experiment directory to 
perform further analyses

• Results available in HTML format by default
– XLS spreadsheets and textual output generation are also available

• Online help is available:

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL

$ maqao oneview --create-report=one --executable=./myexe --mpi_command="mpirun -n 16"

$ maqao oneview --create-report=one --config=my_config.lua"

$ maqao oneview --help

27
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Analysing an application with MAQAO

MAQAO modules can be invoked separately for advanced 
analyses

• LProf
– Profiling 

– Display functions profile

– Displaying the results from a ONE View run

• CQA

Online help is available:

MAQAO PERFORMANCE ANALYSIS AND OPTIMIZATION TOOL

$ maqao lprof xp=exp_dir --mpi-command="mpirun -n 16" -- ./myexe

$ maqao lprof xp=exp_dir –df

$ maqao lprof xp=oneview_xp_dir/lprof_npsu –df

$ maqao cqa loop=42 myexe

$ maqao cqa --help

$ maqao lprof --help

28



QUESTIONS ?
Thanks for your attention

MAQAO Performance Analysis and Optimization Tool 29



NAVIGATING ONE VIEW REPORTS

MAQAO Performance Analysis and Optimization Tool 30



• Experiment summary
– Characteristics of the machine 

where the experiment took 
place 

• Global metrics
– General quality metrics derived 

from MAQAO analyses
– Global speedup predictions

• Speedup prediction 
depending on the number 
of vectorised loops

• Ordered speedups to 
identify the loops to 
optimise in priority

MAQAO ONE View Global Summary

MAQAO Performance Analysis and Optimization Tool
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ONE View Global Metrics

• Global metrics
– General quality metrics derived from MAQAO analyses

– Global speedup predictions

• Potential speedups 
– Speedup prediction depending on the number of optimised loops

– Ordered speedups to identify the loops to optimise in priority

• 𝐺𝑙𝑜𝑏𝑎𝑙 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = σ𝑙𝑜𝑜𝑝𝑠 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 ∗ 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑠𝑝𝑒𝑒𝑑𝑢𝑝

• LProf provides coverage of the loops

• CQA and DECAN provide speedup estimation for loops
– Speedup if loop vectorised or without address computation

– All data in L1 cache

MAQAO Performance Analysis and Optimization Tool
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Identifying hotspots

• Exclusive coverage

• Load balancing across 
threads

• Loops nests by functions

MAQAO ONE View: Functions Profiling

MAQAO Performance Analysis and Optimization Tool

Single

Outermost

Inbetween

Inbetween

Innermost
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MAQAO ONE View Loop Profiling Summary

• Identifying loop hotspots

• Vectorisation information

• Potential speedups by optimisation
– Clean: Removing address computations

– FP Vectorised: Vectorising floating-point computations

– Fully Vectorised: Vectorising floating-point computations and memory 
accesses

MAQAO Performance Analysis and Optimization Tool
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MAQAO ONE View Scalability Reports 
Application View

• Coverage per category
– Comparison of categories for each run 

• Coverage per parallel efficiency

– 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑇𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙∗𝑁𝑡ℎ𝑟𝑒𝑎𝑑𝑠

• Distinguishing functions only represented in parallel or sequential

– Displays efficiency by coverage

MAQAO Performance Analysis and Optimization Tool
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BACKUP SLIDES

MAQAO Performance Analysis and Optimization Tool 36



MAQAO History

• 2004: Begun development
– Focusing on Intel Itanium 

architecture

– Analysis  of assembly files

• 2006: Transition to Intel x86-64

• 2009: Binary analysis support
– First version of decremental 

analysis

• 2012: Support of KNC 
architecture 

• 2014: Profiling features

• 2015: First version of ONE View

• 2017: Prototype support of ARM 
architecture

• 2018: Scalability mode

• 2020: Comparison mode

• 2022: Support of ARM (beta)
MAQAO Performance Analysis and Optimization Tool
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