

Important algorithms for CIPSI

Abdallah Ammar, Emmanuel Giner, Pierre-François Loos, Anthony Scemama

19/04/2023

Laboratoire de Chimie et Physique Quantiques, IRSAMC, UPS/CNRS, Toulouse

Targeting Real Chemical Accuracy at the Exascale project has received funding from the European Union Horizoon 2020 research and innovation programme under Grant Agreement No. 952165.

Integral-driven : sequential access to $\mathcal{O}(N^4)$ integrals, indirect access to vectors

1	<pre>for (i,j,k,l,integral) in all_integrals:</pre>				
2	<pre>pairs = find_determinant_pairs(i,j,k,l,ijkl)</pre>				
3	for (d1,d2) in pairs:				
4	do_work(d1,d2)				

Determinant-driven : sequential access to vectors, indirect access to integrals

1 for d1 in determinants: 2 for d2 in determinants: 3 i,j,k,l = get_excitation(d1,d2) 4 do_work(d1,d2)

- Integral-driven: outer loop appears as $\mathcal{O}(N_{\rm MO}^4)$, ignores zero integrals
- Determinant-driven: outer loops appear as $\mathcal{O}(N_{det}^2)$
- Efficient CIPSI: How to be efficient within a determinant-driven approach

Data structures

Need for functions : $f(I, J) \rightarrow (i, j, k, l, \phi)$

A Slater determinant can be written as a Waller-Hartree double determinant

$$|I\rangle = \hat{I} \,|\rangle = -1^{p} \times \hat{I}_{\uparrow} \,\hat{I}_{\downarrow} \,|\rangle = -1^{p} \times \hat{I}_{\uparrow} \,|\rangle \otimes \,\,\hat{I}_{\downarrow} \,|\rangle$$

Storage:

- = 1 determinant: one integer for \hat{l}_{\uparrow} and one integer for \hat{l}_{\downarrow}
- Set the bit to 1 if the orbital is occupied
- \bullet > 64 orbitals: $N_{
 m int}$ integers for \hat{l}_{\uparrow} and for \hat{l}_{\downarrow}

Bitwise operations (1 CPU cycle):

- and, or, xor, shl, shr: logical
- shl, shr: shift left/right
- Izcnt, tzcnt : Number of leading/trailing zero bits
- popcnt : Number of bits set to 1

Example: degree of excitation between $|I\rangle$ and $|J\rangle$:

```
integer function degree(det_i, det_j, N_int)
1
          integer, intent(in) :: N_int
2
          integer*8, intent(in) :: det_i(N_int,2), det_j(N_int,2)
3
          integer
                                 :: two_d. i
          two_d = 0
5
          do i=1.N int
             two_d = two_d + popcnt(ieor(det_i(i,1), det_j(i,1))) &
7
                            + popcnt( ieor( det_i(i,2), det_j(i,2) ) )
8
          end do
9
          degree = rshift(two_d,1)
10
        end function degree
11
```


To get the orbital indices: number of leading/trailing zeros gives the positions of the 1's.

Constraints

- Integrals require a fast random access
- 8-fold permutation symmetry $\langle ij|kl \rangle = \langle kj|il \rangle = \cdots$
- Many integrals are zero: need for a sparse data structure

Implementation

- Hash table
- f(i, j, k, l) > K gives the same K for all similar permutations
- f(i+1,j,k,l) f(i,j,k,l) is likely to be 1 : locality
- Array (cache) for 128⁴ frequently used integrals

Table: Time to access integrals (in nanoseconds/integral) with different access patterns. The time to generate random numbers (measured as 67[~]ns/integral) was not counted in the random access results.

Access	Array	Hash table
i, j, k, l	9.72	125.79
i, j, I, k	9.72	120.64
i, k, j, I	10.29	144.65
I, k, j, i	88.62	125.79
I, k, i, j	88.62	120.64
Random	170.00	370.00

Efficient direct CI

Davidson

- Power method with preconditioning for symmetric diagonal-dominant matrices.
- \blacksquare Bottleneck: $\mathcal{H}|\Psi\rangle$

CIPSI

- CIPSI is not a *method* but an algorithm
- CIPSI can be seen as a refinement of Davidson's diagonalization algorithm: At every iteration:
 - Davidson: add *all* singles and doubles, stop at $\Delta E = 10^{-15}$
 - CIPSI: add *selected* singles and doubles, stop at $E_{PT2} = 10^{-4}$, $N_{det max}$, ...
- Everything that can be done with Davidson can be done with CIPSI: preserve symmetries (space and spin), limit degree of excitation (CISD, CISDTQ, etc), limit space (CAS), effective Hamiltonians, excited states, etc.

Popular misconception

Sorting is not $\mathcal{O}(N \log(N))$: sorting is $\mathcal{O}(N \log(M))$ (linear in N, log in M)

- A is an array of N integer values
- The bitmask is an integer with only one bit set to one (00001000)

```
void radix_sort(int* A, size_t N, int bitmask) {
            if (bitmask == 0) return;
 2
3
            int left[N], right[N];
            int p=0 ; int q=0 ;
 4
5
            for (int i=0 ; i<N ; i++) {
                if (A[i] \& bitmask) \{ right[q] = A[i]; q++; \}
 6
                else
                                   { left [p] = A[i]; p++; } }
 7
            radix_sort(left , p, bitmask >> 1) ;
8
            radix_sort(right, q, bitmask >> 1);
9
            for (int i=0 ; i
10
            for (int i=0 ; i<q ; i++) { A[p+i] = right[i] ; }</pre>
11
        3
12
```


$$\Psi = \sum_{I} c_{I} |I\rangle = \sum_{k=1}^{N_{det}^{\uparrow}} \sum_{m=1}^{N_{det}^{\downarrow}} C_{km} D_{k}^{\uparrow} D_{m}^{\downarrow}$$

• If D_k^{\uparrow} and D_m^{\downarrow} are represented as N_{MO} -bit strings, this transformation can be done in $\mathcal{O}(N_{det} \times N_{MO})$ (sorting).

Searching for same-spin excitations: looping over k or $m : \mathcal{O}(N_{det}^{\uparrow}) \sim \mathcal{O}(\sqrt{N_{det}})$

For all $I = D_k^{\uparrow} D_m^{\downarrow}$ in Ψ :

• Find indices p of \uparrow singles and $\uparrow\uparrow$ doubles

$$\langle I|\mathcal{H}|\Psi\rangle = \sum_{J} \langle I|\mathcal{H}|J\rangle c_{J} = \sum_{p} \langle D_{k}^{\uparrow} D_{m}^{\downarrow}|\mathcal{H}|D_{p}^{\uparrow} D_{m}^{\downarrow}\rangle C_{pm}$$

• Find indices q of \downarrow singles and $\downarrow\downarrow$ doubles

$$\langle I|\mathcal{H}|\Psi\rangle = \sum_{J} \langle I|\mathcal{H}|J\rangle c_J = \sum_{q} \langle D_k^{\uparrow} D_m^{\downarrow}|\mathcal{H}|D_k^{\uparrow} D_q^{\downarrow}\rangle C_{kq}$$

- Find indices pq of $\uparrow\downarrow$ doubles:
 - Find indices p of \uparrow singles
 - Find indices q of \downarrow singles

$$\langle I|\mathcal{H}|\Psi\rangle = \sum_{J} \langle I|\mathcal{H}|J\rangle c_{J} = \sum_{pq} \langle D_{k}^{\uparrow} D_{m}^{\downarrow}|\mathcal{H}|D_{p}^{\uparrow} D_{q}^{\downarrow}\rangle C_{pq}$$

Wall-clock time (s)

Number of 36-core nodes

Parallel efficiency

Stochastic evaluation of the PT2 correction and selection

Consider a wave function Ψ expanded on an *arbitrary* set D of N_{det} orthonormal Slater determinants,

$$\Psi = \sum_{I \in \mathcal{D}} c_I |I\rangle, \quad E_{\text{var}} = \frac{\langle \Psi | \mathcal{H} | \Psi \rangle}{\langle \Psi | \Psi \rangle}$$

The Epstein-Nesbet 2nd order correction to the energy is

$$\mathsf{E}_{\mathsf{PT2}} = \sum_{\alpha \in \mathcal{A}} \frac{\langle \Psi | \mathcal{H} | \alpha \rangle \langle \alpha | \mathcal{H} | \Psi \rangle}{E_{\mathsf{var}} - \langle \alpha | \mathcal{H} | \alpha \rangle}$$

The set \mathcal{A} contains the Slater determinants

- \blacksquare that are not in ${\cal D}$
- for which $d(I, \alpha) = 1$ or 2 for at least one pair (I, α)

$$\boldsymbol{E}_{\mathsf{PT2}} = \sum_{\boldsymbol{\alpha} \in \mathcal{A}} \frac{\langle \boldsymbol{\Psi} | \mathcal{H} | \boldsymbol{\alpha} \rangle \langle \boldsymbol{\alpha} | \mathcal{H} | \boldsymbol{\Psi} \rangle}{E_{\mathsf{var}} - \langle \boldsymbol{\alpha} | \mathcal{H} | \boldsymbol{\alpha} \rangle} = \sum_{\boldsymbol{\alpha} \in \mathcal{A}} \frac{\left(\sum_{I \in \mathcal{D}} c_I \langle I | \mathcal{H} | \boldsymbol{\alpha} \rangle\right)^2}{E_{\mathsf{var}} - \langle \boldsymbol{\alpha} | \mathcal{H} | \boldsymbol{\alpha} \rangle}$$

• Size of ${\cal A}$: size of $(\hat{{\cal T}}_1+\hat{{\cal T}}_2)|\Psi
angle$

• Number of non-zero terms : $d(I, \alpha) \leq 2 \sim N_{det} \times \left[\left(N_{elec}^{\uparrow} \times (N_{MO} - N_{elec}^{\uparrow}) \right)^2 \right]$

Expensive

"Non-general" but *conventional* solutions:

- Partition the MO space into different classes (active, virtual, inactive, etc)
- Use another zeroth-order Hamiltonian (CAS-PT2, NEV-PT2)

Solutions applicable to any wave function:

- Truncation of D to consider only contributions due to large c₁
 But: Truncation → bias because E_{PT2} is a sum of same-sign values (negative).
- Algorithmic improvement
- Monte Carlo sampling in \mathcal{A} . Unbiased method But: Statistical error decreases as $\mathcal{O}\left(1/\sqrt{N_{\text{samples}}}\right) \Longrightarrow$ Difficult to get $10^{-5}a.u$ precision.
- Parallelism

Central idea

Choose an arbitrary ordering of |1>.
 Natural choice:

$$w_I = \frac{c_I^2}{\langle \Psi | \Psi \rangle}$$

- Make *disjoint* groups A₁ of |α⟩ originating from the same generator |1⟩
- Each A₁ has its own contribution e₁ to
 E_{PT2}

$$E_{\mathsf{PT2}} = \sum_{\alpha \in \mathcal{A}} \frac{\left(\langle \Psi | \mathcal{H} | \alpha \rangle\right)^2}{E_{\mathsf{var}} - \langle \alpha | \mathcal{H} | \alpha \rangle}$$
$$= \sum_{I \in \mathcal{D}} \sum_{\alpha_I \in \mathcal{A}_I} \frac{\left(\langle \Psi | \mathcal{H} | \alpha_I \rangle\right)^2}{E_{\mathsf{var}} - \langle \alpha_I | \mathcal{H} | \alpha_I \rangle}$$
$$= \sum_{I \in \mathcal{D}} \epsilon_I$$

Contribution per *internal* determinant

$$\epsilon_{I} = \sum_{\alpha_{I} \in \mathcal{A}_{I}} \frac{\left(\langle \Psi | \mathcal{H} | \alpha_{I} \rangle\right)^{2}}{E_{\mathsf{var}} - \langle \alpha_{I} | \mathcal{H} | \alpha_{I} \rangle}$$

<u>From</u> $\mathcal{O}(N_{det}^2)$ to $\mathcal{O}(N_{det}^{3/2})$

- Sorting is $\mathcal{O}(N_{det})$
- $\langle I | \mathcal{H} | \boldsymbol{\alpha} \rangle \langle \boldsymbol{\alpha} | \mathcal{H} | J \rangle = 0$ when d(I, J) > 4
- Loop over N_{det}^{\uparrow} determinants (rows of the *C* matrix) Remove all the rows where $d(D_k^{\uparrow}, D_{k'}^{\uparrow}) > 4$ ($\sim O(\sqrt{N_{det}})$)
- Loop over N_{det}^{\downarrow} determinants (columns of the *C* matrix) Remove all the columns where $d(D_m^{\downarrow}, D_{m'}^{\downarrow}) > 4$)
- The remaining number of determinants is bounded by the size of the CISDTQ space

$$\epsilon_{I} = \sum_{\boldsymbol{\alpha} \in \mathcal{A}_{I}} \frac{\langle \Psi_{I}' | \mathcal{H} | \boldsymbol{\alpha}_{I} \rangle \langle \boldsymbol{\alpha}_{I} | \mathcal{H} | \Psi_{I}' \rangle}{E_{\mathsf{var}} - \langle \boldsymbol{\alpha}_{I} | \mathcal{H} | \boldsymbol{\alpha}_{I} \rangle}$$

- \blacksquare We know that all the $|\alpha_I\rangle$ are singles and doubles with respect to $|I\rangle$
- $|\Psi'_I\rangle$ is the projection of $|\Psi\rangle$ on the subspace of determinants in \mathcal{D} which are no more than quadruply excited with respect to $|I\rangle$
- For a subset of excitations $ij \to ab$, $|\Psi'\rangle$ is filtered further with possible hole/particle constraints

$$\epsilon_{I} = \sum_{\boldsymbol{\alpha}_{I} \in \mathcal{A}_{I}} \frac{\left(\langle \Psi | \mathcal{H} | \boldsymbol{\alpha}_{I} \rangle\right)^{2}}{E_{\mathsf{var}} - \langle \boldsymbol{\alpha}_{I} | \mathcal{H} | \boldsymbol{\alpha}_{I} \rangle}$$

- 2 $\langle \alpha_I | \mathcal{H} | \alpha_I \rangle$ is always large (otherwise $| \alpha_I \rangle$ would be better in the variational space, and PT is questionable)
- $\forall I \in \mathcal{D} : \epsilon_I \leq \mathbf{0}$
- $|\epsilon_I|$ is expected to decrease as c_I^2
- The computational cost decreases with I

Monte Carlo formulation

$$E_{\mathsf{PT2}} = \sum_{I \in \mathcal{D}} \epsilon_I = \sum_{I \in \mathcal{D}} p_I \frac{\epsilon_I}{p_I} = \left\langle \frac{\epsilon_I}{p_I} \right\rangle_{p_I}$$

Naive sampling

Uniform sampling: $p_l = \frac{1}{N_{det}}$

Figure: F_2 , cc-pVDZ, 10^6 determinants in the variational space

Improved sampling

Sampling : $p_I = c_I^2$

Figure: F_2 , cc-pVDZ, 10^6 determinants in the variational space

Only N_{det} contributions $\epsilon_I \longrightarrow all \epsilon_I$ can be stored in memory.

Lazy Evaluation (Wikipedia)

In programming language theory, *lazy evaluation*, or *call-by-need* is an evaluation strategy which delays the evaluation of an expression until its value is needed (non-strict evaluation) and which also avoids repeated evaluations (sharing).

```
1 def lazy_e(i):
2 if not e_is_computed[i]:
3 e[i] = compute_e(i)
4 e_is_computed[i] = true
5 return e[i]
```


Monte Carlo with Lazy Evaluation

$$E_{\mathsf{PT2}} = \sum_{I \in \mathcal{D}} \epsilon_I = \sum_{I \in \mathcal{D}} p_I \frac{\epsilon_I}{p_I} = \left\langle \frac{\epsilon_I}{p_I} \right\rangle_{p_I}$$

- Draw a generator determinant $|I\rangle$ with probability p_I
- Increment n_I , the number of evaluations of ϵ_I
- If ϵ_I is not already computed, compute it and store its value
- $E_{\text{PT2}} \sim \sum_{I \in \mathcal{D}} \frac{n_I}{N_{\text{samples}}} \frac{\epsilon_I}{p_I}$
- Statistical error : $\mathcal{O}\left(1/\sqrt{N_{\mathsf{samples}}}\right)$
- Lazy evaluation : Exponential acceleration (time to solution)

Monte Carlo with Lazy Evaluation

Monte Carlo with Lazy Evaluation

- Noise can be smoothed out by averaging
- Split *D* into *M* equiprobable sets : "Comb"

$$\mathsf{E}_{\mathsf{PT2}} = \sum_{I \in \mathcal{D}} \epsilon_I = \sum_{k=1}^{M} \sum_{I_k \in \mathcal{D}_k} \epsilon_{I_k}$$

New Monte Carlo estimator

$$E_{\text{PT2}} = \left\langle \frac{1}{M} \sum_{k=1}^{M} \frac{\epsilon_{l_k}}{\rho_{l_k}} \right\rangle_{(\rho_{l_1}, \dots, \rho_{l_M})}$$

Figure: F_2 , cc-pVDZ, 10^6 determinants in the variational space

- When all the determinants have been drawn, the exact E_{PT2} can be computed
- lacksquare \Longrightarrow The result with zero statistical error can be reached in a finite time
- In typical wave functions, 90% of the norm is on a few determinants
- Compute the few first contributions ϵ_I , and perform the MC in the rest

$$E_{\mathsf{PT2}} = \sum_{I \in \mathcal{D}_D} \epsilon_I + \left\langle \frac{1}{M} \sum_{k=1}^M \frac{\epsilon_{I_k}}{\rho_{I_k}} \right\rangle_{(\rho_I \in \mathcal{D}_S)}$$

Make the deterministic part grow during the calculation.

At each MC step

- Draw a random number
- Find the determinants selected by the comb (increment n_l 's)
- Compute the ϵ_I which have not been yet computed
- Compute deterministically the first non-computed determinant
- \blacksquare If a tooth of the comb is completely filled \Longrightarrow Deterministic

At any time

$$E_{\mathsf{PT2}}(t) = \sum_{I \in \mathcal{D}_{D}(t)} \epsilon_{I} + \sum_{I \in \mathcal{D}_{S}(t)} \frac{1}{M(t)} \frac{n_{I}(t)}{N_{\mathsf{samples}}(t)} \frac{\epsilon_{I}}{p_{I}}$$

Figure: F_2 , cc-pVDZ, 10^6 determinants in the variational space

Some timings: Cr₂, 210⁷ determinants, 800 cores

Basis	E _{PT2}	Wall-clock time
cc-pVDZ	-0.0683(1)	14 min
	-0.06836(1)	55 min
	-0.068361(1)	2.4 hr
	-0.068360604	3 hr
cc-pVTZ	-0.1244(5)	19 min
	-0.1247(1)	58 min
	-0.12463(1)	3.5 hr
	-0.124642(1)	8.7 hr
	_	\sim 15 hr (estimated)
cc-pVQZ	-0.1558(5)	56 min
	-0.1559(1)	2.5 hr
	-0.15595(1)	9.0 hr
	-0.155952(1)	18.5 hr
	_	\sim 29 hr (estimated)

Wall-clock time (s)

Number of determinants

Scaling with N_{det}

Parallel efficiency

There is no memory bottleneck with PT2

• The $|\alpha\rangle$ determinants are never stored