

Transcorrelated approach for CI methods A Ammar¹, E Giner², P F Loos¹ & A Scemama¹

April 19, 2023

¹ LCPQ, IRSAMC, UPS/CNRS, Toulouse, France

² LCT, Sorbonne Université/CNRS, Paris, France

Targeting Real Chemical Accuracy at the Exascale project has received funding from the European Union Horizoon 2020 research and innovation programme under Grant Agreement No. 952165.

Introduction

→ Wavefunction theory provides a systematic way to improve the accuracy

→ FCI calculation in a CBS gives the exact solution

- oxtimes selected CI (CIPSI, QMCFCI, \ldots) are powerful methods to approximate & compactify the FCI space
- 💛 What about the convergence with respect to the size of the basis set ?

→ If we have a CBS $\{\phi_1(\mathbf{r}), \phi_2(\mathbf{r}), \dots\}$, we can expand exactly the wavefunction in this basis

For 1 electron:
$$\Psi(\mathbf{r}) = \sum_{i}^{\infty} c_i \phi_i(\mathbf{r})$$

$$\underline{\text{For 2 electrons:}} \quad \Psi(\mathbf{r}_1, \mathbf{r}_2) = \sum_{i}^{\infty} c_i(\mathbf{r}_2) \phi_i(\mathbf{r}_1) = \sum_{i,j}^{\infty} a_{ij} \phi_j(\mathbf{r}_2) \phi_i(\mathbf{r}_1) = \frac{1}{2} \sum_{i,j}^{\infty} a_{ij} \begin{vmatrix} \phi_i(\mathbf{r}_1) & \phi_j(\mathbf{r}_1) \\ \phi_i(\mathbf{r}_2) & \phi_j(\mathbf{r}_2) \end{vmatrix}$$

→ The use of truncated basis sets \mathcal{B} of one-electron functions leads to a poor representation of the "dynamical correlation" in many-electron systems. A large \mathcal{B} is required to cover these effects

→ Alternatively, one may expect to converge faster by including explicit two-electron functions

$$\Psi(\mathbf{r_1},\mathbf{r_2}) pprox \left(\sum_{i,j}^{<\infty} a_{ij} \phi_j(\mathbf{r_2}) \phi_i(\mathbf{r_1})\right) \mathcal{J}(\mathbf{r_1},\mathbf{r_2})$$

 \Rightarrow To illustrate the effect of including explicit 2-electron terms we consider the exemple of the Helium atom

	nb of parameters	Energy (a.u.)
exact		-2.9037
FCI(cc-pVDZ)	196	- 2 .8876
FCI(cc-pVTZ)	900	- 2 . 90 02
FCI(cc-pVQZ)	3 025	- 2 . 90 24
FCI(cc-pV5Z)	8 281	- 2.903 2
FCI(cc-pV6Z)	19 600	-2.903 4
Hylleraas (1928)	6	- 2 . 903 3

 \clubsuit On the other hand, exact wavefunction must satisfies the Kato's cusp

$$\frac{1}{\Psi} \frac{\partial \Psi}{\partial_{r_{12}}} \bigg|_{r_{12}=0} = \frac{1}{2}$$

 \Rightarrow Hylleraas-like approaches $r_{12}^{\nu}, e^{-\gamma r_{12}^2}, e^{-\gamma r_{12}}, \dots$

➤ very high accuracy but feasible only for systems with at most 3-4 electrons

 \Rightarrow R12/F12 methods:

$$\Psi = \Phi_{\mathsf{CI}} + \hat{\mathcal{F}}_{\mathsf{12}} \, \Phi_{\mathsf{ref}}$$

> accelerate convergence with respect to \mathcal{B} (for exemple CCSD-R12 in cc-pVTZ \approx CCSD in cc-pV5Z)

 \blacktriangleright but, the wavefunction is expanded instead of being compacted

▶ involves 3- and 4-electron integrals, auxiliary bases, simple 2-electron geminals, many approximations ...

➡ CI-Jatrow Ansatz:

$$\Psi = \Phi_{\mathsf{CI}} \times e^{+\tau} = \sum_{I} c_{I} D_{I} \times e^{+\tau} \quad \text{with } \tau = \sum_{i,j} u(\mathbf{r}_{i}, \mathbf{r}_{j})$$

- \blacktriangleright accelerates convergence with respect to \mathcal{B}
- compacted wavefunction (× instead of +)

> very complex integrals
$$\langle D_I e^{+\tau} | \widehat{O} | D_J e^{+\tau} \rangle$$
 (Monte Carlo)

- statistical noise
- * computationally expensive algorithms

Transcorrelated approach

- ↔ introduced by Boys & Handy in 1979 and resurrected in 2000 by Ten-no and coworkers
- → from 2000 → 2023: TC has been combined with PT, CI, CC, DMRG, DFT, Quantum computing, ...

 \Rightarrow The aim of the TC theory is nothing but to solve the Schrödinger equation for the Ansatz

$$\Psi = \Phi_{\mathsf{CI}} \times e^{+\tau} \quad \text{with} \begin{cases} \Phi_{\mathsf{CI}} = \sum_{l} c_{l} D_{l} \\ \tau = \sum_{i,j} u(\mathbf{r}_{i}, \mathbf{r}_{j}) \end{cases}$$

$$\hat{H} (e^{+\tau} \Phi_{\mathsf{CI}}) = E (e^{+\tau} \Phi_{\mathsf{CI}}) \Rightarrow e^{-\tau} \hat{H} (e^{+\tau} \Phi_{\mathsf{CI}}) = E \Phi_{\mathsf{CI}}$$

$$\Rightarrow \boxed{\hat{H}_{\mathsf{TC}} \Phi_{\mathsf{CI}} = E \Phi_{\mathsf{CI}}} \quad \text{with} \boxed{\hat{H}_{\mathsf{TC}} \equiv e^{-\hat{\tau}} \hat{H} e^{+\hat{\tau}}}$$

- $\Rightarrow \hat{H}$ and \hat{H}_{TC} share the same spectrum (similarity-transformation)
- → The effective TC Hamiltonian is non-Hermitian and can be written as

$$\hat{H}_{\mathsf{TC}} = \hat{H} + \hat{K}_{12} + \hat{L}_{123}$$

 $\hat{H} |\xi\rangle = E |\xi\rangle \qquad \qquad \hat{H}_{\mathsf{TC}} |\xi_R\rangle = E_{\mathsf{TC}} |\xi_R\rangle$ $\langle \xi| \, \hat{H}^{\dagger} = E \, \langle \xi| \qquad \qquad \langle \xi_L | \, \hat{H}^{\dagger}_{\mathsf{TC}} = E_{\mathsf{TC}} \, \langle \xi_L |$

Pros and Cons of TC method

- \cong restored Slater-Condon rules: $\langle D_I | \hat{H} | D_J \rangle$, $\langle D_I | \hat{K}_{12} | D_J \rangle$, $\langle D_I | \hat{L}_{123} | D_J \rangle$
- $\stackrel{()}{=}$ For a good choice of au, there is no local divergences $1/r_{12}$ in \hat{H}_{TC} and Φ_{CI} is cuspless
- ¹ \hat{H}_{TC} is non-Hermitian (Variational principle): $\langle f | \hat{K}_{12}^{\dagger} g \rangle \neq \langle f | \hat{K}_{12} g \rangle$ ² \hat{H}_{TC} is a **3-electron operator**: we need 6d tables for $\langle \phi_i \phi_j \phi_k | \hat{L}_{123} | \phi_I \phi_m \phi_n \rangle$ ² 2-electron integrals **are not analytical** in general (even with GTOs)

Toward a practical TC approach

→ Biorthogonal Quantum Mechanics

Optimization: Variational principle → stationary principle

to optimize the CI parameters of $\Phi(\mathcal{P}) \times e^{+\tau}$, we introduce a left wavefunction $X(\mathcal{P}') \times e^{-\tau}$

$$\boxed{\frac{\partial}{\partial \mathcal{P}'} \mathcal{E}_{\mathsf{TC}}[X, \Phi] = 0 \Rightarrow \text{ stationary point } \mathcal{P}} \quad \text{with } \quad \mathcal{E}_{\mathsf{TC}}[X, \Phi] = \frac{\langle X | \hat{H}_{\mathsf{TC}} | \Phi \rangle}{\langle X | \Phi \rangle}$$

* Application: Quantum dynamics, perturbation theory, second quantization, ...

- ➡ Integrals complexity
 - ${\ensuremath{\#}}$ usually we can reduce the complexity of 3-e integrals from \mathbb{R}^9 to \mathbb{R}^6
 - * data storage of the 3-e term $\mathcal{O}(M_{\beta}^{6}) \rightarrow$ approximations on the 3-e term lead to small bias (**xTC**)
 - * For our Jastrow, the involved integrals are semi-analytical

Optimization of CI-Jastrow wavefunction

→ <u>Recall</u>: CI coefficients of $\Phi_{CI} = \sum_{I} c_{I} D_{I}$ are optimized by solving

$$\mathbf{H}\mathbf{C} = E \mathbf{S}\mathbf{C} \quad \text{where} \begin{cases} H_{IK} = \langle D_I | \hat{H} | D_K \rangle, & \sum_{i \in I} \text{over } \mathbf{2}\text{-electron integrals thanks to Slater-Condon rules} \\ S_{IK} = \langle D_I | D_K \rangle = \delta_{IK} \end{cases}$$

→ For a CI-Jastow wavefunction $\Phi_{CI-J} = \sum_{l} c_l D_l \times e^{+\tau}$, the eigenproblem in the variational scheme becomes

$$\mathbf{H} \, \mathbf{C} = E \, \mathbf{S} \, \mathbf{C} \quad \text{where} \begin{array}{l} \left\{ \begin{aligned} H_{IK} &= \langle D_I e^{+\tau} | \hat{H} | D_K e^{+\tau} \rangle \,, & \text{Monte Carlo technics} \\ S_{IK} &= \langle D_I e^{+\tau} | D_K e^{+\tau} \rangle \neq \delta_{IK}, & \text{Monte Carlo technics} \end{aligned} \right.$$

→ In the TC framework, we solve rather a non-variational (stationary) eigenproblem

$$\mathbf{H}\,\mathbf{C} = E\,\mathbf{S}\,\mathbf{C} \quad \text{where} \begin{array}{l} \left\{ \begin{aligned} H_{IK} &= \langle D_I e^{-\tau} | \hat{H} | D_K e^{+\tau} \rangle = \langle D_I | \hat{H}_{\mathsf{TC}} | D_K \rangle \,, & \sum \text{over } \mathbf{2}\text{-} \mathbf{\&} \text{ 3-electron integrals} \\ S_{IK} &= \langle D_I e^{-\tau} | D_K e^{+\tau} \rangle = \delta_{IK} \end{aligned} \right.$$

Optimisation of CI coefficients

Illustration: H_2 with FCI wavefunctions

- → Hartree-Fock are widely used as start point for post-HF methods
- ➡ TC canonical orbitals
 - \Rightarrow left & right orbitals: $\{\chi\}$ & $\{\phi\}$
 - → left & right Slater determinants: D^{χ} & D^{ϕ}
 - \Rightarrow stationary point of the TC energy \Rightarrow generalized Brillouin theorem
- → TC self consistent field (TC-SCF)
 - (1) select an orthogonal orbitals C^0 as a first guess $C^{\chi}=C^{\phi}=C^0$
 - @ built and diagonalize the TC-Fock matrix to get new biorthogonal vectors { V_L , V_R }, $V_L^t \times V_R = I$
 - ③ update orbitals: $C^{\chi} \leftarrow C^{\chi} \times V_{\mathsf{L}}, \ C^{\phi} \leftarrow C^{\phi} \times V_{\mathsf{R}}$
 - ④ if(.not.converged) go to ②

Illustration: Ne in cc-pCVDZ

selected CI for explicitly correlated wavefunction

- ➡ TC-CIPSI algorithm
- 1 start with a selected CI space $\mathcal I$

(2) diagonalize \hat{H}_{TC} in \mathcal{I} : $X^{(0)}$, $\Phi^{(0)}$, $E^{(0)}_{TC}$ (3) find the connected external determinants $\{\alpha | \langle \alpha | \hat{H}_{TC} | I \rangle \neq 0\}$

4 compute the **TC** second-order perturbative contributions (**TC-PT**₂)

$$e_{\alpha}^{(2)} = \frac{\langle \chi^{(0)} | \hat{H}_{\mathsf{TC}} | \alpha \rangle \langle \alpha | \hat{H}_{\mathsf{TC}} | \Phi^{(0)} \rangle}{E_{\mathsf{TC}}^{(0)} - \langle \alpha | \hat{H} | \alpha \rangle}, \quad E_{\mathsf{TC}}^{(2)} = \sum_{\alpha} e_{\alpha}^{(2)}$$

(5) estimate the TC-FCI energy: $E_{TC-FCI} \approx E_{TC}^{(0)} + E_{TC}^{(2)}$ (6) select the most relevant external determinants $\mathcal{A}: \mathcal{I} \leftarrow \mathcal{I} \cup \mathcal{A}$ (7) update the zeroth-order $X^{(0)}$, $\Phi^{(0)}$ and $E_{TC}^{(0)}$ using **Davidson** (8) if not converged, go to (3)

→ TC-CIPSI → TC-FCI when
$$E_{TC}^{(2)} \rightarrow 0$$

CIPSI	vs TC-CIPSI	
compactify $\Psi_{CI} = \sum_{I} c_{I} D_{I}$	compactify $\Psi_{CI-J} = \sum_l c_l D_l e^{+ au}$	
target the FCI	target the TC-FCI	
start with $\Phi^{(0)}, E^{(0)}$	start with $\Phi^{(0)}, X^{(0)}, E^{(0)}_{TC}$	
$e^{(2)}_lpha = rac{\left \langlelpha \hat{H} \Phi^{(0)} angle ight ^2}{E^{(0)}-\langlelpha \hat{H} lpha angle} < 0$	$e_{lpha}^{(2)} = rac{\langle X^{(0)} \hat{H}_{TC} lpha angle \langle lpha \hat{H}_{TC} \Phi^{(0)} angle}{E_{TC}^{(0)} - \langle lpha \hat{H}_{TC} lpha angle}$	
ymmetric Davidson to update $\Phi^{(0)}, E^{(0)}$	non-symmetric Davidson to update $\Phi^{(0)}, X^{(0)}$	⁰⁾ , <i>E</i> ⁽⁰⁾ _{TC}

CIPSI vs TC-CIPSI

Exemple: N_2 in cc-pVDZ

- ↔ CI-Jastrow wavefunction
 - ∠ provides a compacted excplicitly correlated wavefunction
 - \measuredangle accelerates the convergence with respect to the basis set
- → TC theory
 - ∠ allows to avoid high-dimensional integrals via a similarity transformation
 - d combined with Biorthogonal QM, enables to do Quantum Chemistry in an efficient way
- → TC-CIPSI algorithm
 - ∠ selects the most relevant determinants in the CI-Jastrow wavefunction
 - \leq gives near TC-FCI quality thanks to TC-PT₂

Emmanuel Giner

Thank you for your attention

This project has received funding from the European Union's Horizon 2020 - Research and Innovation program - under grant agreement no. 952165.