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Monte Carlo methods

Approaches which make repeated use of random numbers:

» to simulate truly stochastic events

P to solve | deterministic problems | using probabilities

Very important class of methods in statistical mechanics

— Sampling Boltzmann distribution

Computation of averages (integrals in many dimensions)

For quantum mechanical simulations — ‘Quantum Monte Carlo‘




’A simple example of a Monte Carlo simulation

Basic idea of Monte Carlo through the “dartboard method”

— Throw darts, compute Acircle, COMpute 7

Throw darts which land randomly within the square

# hits inside circle _ Acircle
# hits inside the square  Agquare
/]\

many, many hits

N



Monte Carlo integration

We want to compute the integral of f(x) in the interval [a, b]

f(x)

a b
| = /f )dx = ( —a/ f(x
= (b=a)(F)ay

where (f), ) is the average of the function in the range [a, b]



’ Monte Carlo integration‘

b 1
(o = [ )5 dx

- / ’ F(x)P(x) dx

1/(b-a)

a

{ P(x)

|

a

Draw M random numbers distributed unformely in [a, b]

A

P(x)

1/(b-a) l
—)(—)(—)MHHJ—» x

a

b

Flab) ~

Mfo,




A less uniform function‘

f(x)

P(x)




Monte Carlo integration in a nutshell‘

b
We want to compute | (A) = / A(x)P(x)
a

b
with| P(x) >0 and / P(x) =1 | < a probability density!
a

Monte Carlo — Sample {xq,...,xpm} from P(x)
LM
Estimate (A) ~ v ZlA(x,-)

efﬁE(X)

Statistical physics: P(x) = >

, the Boltzman distribution




’ Quantum chemical simulations

e Density functional theory methods

Large systems but approximate exchange/correlation

e Quantum chemistry post-Hartree-Fock methods
Accurate on small-medium systems

— Jungle of approaches: Cl, MCSCF, CC, CASPT2 ...

° ’Quantum Monte Carlo techniques

Stochastic solution of the Schrodinger equation

Accurate correlated calculations for medium-large systems



’Some general words about quantum Monte Carlo methods

Stochastically solve interacting Schrodinger equation

Why (real-space) quantum Monte Carlo?

— Favorable scaling — Energy is m

— Flexibility in choice of functional form of wave function

— Easy parallelization

— Among most accurate calculations for medium-large systems

Routinely, molecules of up to 100 (mainly 1st/2nd-row) atoms

upto Ci3gHag (A|fé 2017)




A different way of writing the expectation values

Consider the expectation value of the Hamiltonian on W

_ (VH|W)  [dRV*(R)HW(R) > E

ST wiw) T ARV RV(R) ©

HY(R)|  [W(R)”
V(R) | [ dRIV(R)]?

J
:/dR EL(R) P(R) = (EL(R))p

= [ dR

HV(R)

P(R) is a probability density and Ep,(R) = V(R)

the local energy



’Variational Monte Carlo: a random walk of the electrons

Use Monte Carlo integration to compute expectation values

> Sample R from P(R) using Metropolis algorithm
HV(R)
V(R)

> Average local energy Ep(R) = to obtain Ey as

M
Ev = (EL(R Z
R

%\ Random walk in 3N dimensions, R = (r,...,ry)

Just a to evaluate integrals in many dimensions




Is it really “just” a trick?|

Number of electrons 4 x 21422 =106
Number of dimensions 3 x 106 =

Integral on a grid with 10 points/dimension — 103! points!

MC is a powerful trick = Freedom in form of the wave function W



Monte Carlo integration‘

We want to compute an integral

Ey = /dREL(R)P(R)

M
We sample P(R) — | Ey = (E.(R))p Z

— Does the trick always work?

— How efficient is it?



’The Central Limit Theorem‘

Probability density P and function f with finite mean and variance

— [ axfoPeo — [ ax(f() - 2P

Sample M independent random variables xi, ..., xp from P(x)
1M
Define Fm = o Zl f(xi)

As M increases, Fy, is normally distributed as e~ (—m)?/207,

2o

with a mean [ and variance | 02, = 02 /M

— of the original probability density function




Monte Carlo versus deterministic integration ‘

Integration error € using Miy;, integration/Myc Monte Carlo points

— Monte Carlo methods

1 : .
€ x ———— independent on dimension !

vV Myic
It follows from Central Limit Theorem

. . g .. .
— width of Gaussian decreases as ———— for finite variance

vV Muc

— Deterministic integration methods

M2

int

1-dim Simpson rule: € o

d-dim Simpson rule: € —7d

int



Scaling with number of electrons

Roughly, Monte Carlo integration advantageous if d > 8

... for many-body wave functions d = 3Nje !

— Simpson rule integration (M integration points)

C C C 3Nelec/4 -
€= "4/d — 43N, = M = (*) Exponential
M M elec €

int int

— Monte Carlo integration (Myic Monte Carlo samples)

o N, C\?2 .
€= =cC clec = Myc = (*) Netec
vV Myic Myic €




’Summary of variational Monte Carlo‘

Expectation value of the Hamiltonian on W

g, = WHIY) _ [ rHY(R) V(R)?

(VW) VU(R) [dR|V(R)]2 :/dR EL(R) P(R)

Ey = /dREL(R)P(R)

o? = /dR(EL(R)—EV)2P(R)

Estimate Ey and o from M independent samples as
1M
E, = MZIEL(R;)
1=

M
1 _
-2 _ - N 2



Are there any conditions on many-body W to be used in VMC?

Within VMC, we can use any “computable” wave function if

> Continuous, normalizable, proper symmetry

> ’ Finite variance‘

(WI(H — Ev)’|V)

2 2
0" = = ((EL(R) — Ev)")p
(V[v)
ag
since the Monte Carlo error goes as |err(Ey) ~ ——
g ( V) m

Zero variance principle: if W — Wy, Ep,(R) does not fluctuate




Typical VMC run

Example: Local energy and average energy of acetone (C3HgO)

Oyme

Energy (Hartree)

o 500 1000 1500 2000

Evnvic = (EL(R))p = —36.542 + 0.001 Hartree (40x20000 steps)

ovmc = ((EL(R) — Evac)?)p = 0.90 Hartree



Variational Monte Carlo: To do Iist‘

V(R)|?
— Method to distribution function P(R) = fc‘1R|(\Uzl?)|2

— Obtain a set of {R1,R2,...,Ry} distributed as P(R)

How? As in classical Monte Carlo with Metropolis algorithm!

— Build the wave function W(R). Which | functional form | ?

Here, we spend most of our time, open topic of research

(V|o[v)

— Compute expectation values
(V]w)

Reformulate them to reduce fluctuations, open topic of research



How do we sample P(R)?‘

Generate a

M R M

R

R’/ M R" M . %\

Construct M(R¢|R;) as probability for transition R; — R¢ so that

— M(R¢|R;) >0 and /deM(Rf|Ri) =1 (stochastic)

— If we start from an arbitrary distribution P;n;;, we evolve to P

— Impose stationarity condition



Constructing I\/l‘

To sample P, use M which satisfies ’ stationarity condition |

/ dR; M(R¢|R;) P(R;) = P(R;) ¥Ry

> Stationarity condition

= ’ If we start with P, we continue to sample P‘

> Stationarity condition + stochastic property of M + ergodicity

= ’Any initial distribution will evolve to P‘




More stringent condition‘

In practice, we impose ‘ detailed balance‘ condition

[M(R(|R)) P(Ri) = M(Ri[R:) P C D

Stationarity condition can be obtained by summing over R;

/dRiM(Rf|Ri) P(R;) = /dRiM(Ri\Rf) P(R) = P(R;)
S

1

Detailed balance is a sufficient but not necessary condition




How do we construct the transition matrix P in practice?

Metropolis method — Write M as proposal T x acceptance A

T A?
o——0

Ry

| M(R¢|R;) = A(R¢|R;) T (R¢[Ry)

R.

Let us rewrite the detailed balance condition
M(R¢|R;) P(R;) = M(R;|R¢) P(Ry)
A(R¢[Ri) T(R¢[Ri) P(R;) = A(Ri|R¢) T(Ri|R¢) P(Ry)

A(R¢[Ri) _ T(RilRr) P(Ry)
A(Ri|R¢) T(R¢|R;) P(R;)




Choice of acceptance matrix A‘

Original choice by Metropolis et al. maximizes the acceptance

- T(Ri|R¢) P(Ry)
A(R¢|R;) = mm{l’ T(Rf‘Rfi) P(Rf)}

Note: P(R) does not have to be normalized
— For complicated W we do not know the normalization!

— P(R) = [V(R)[?

A

—>

Original Metropolis method‘ Ri

P(R
Symmetric T(R¢|R;) =1/A3V = A(Rf\Ri):mm{l, ( f)}



Better choices of proposal matrix T

Sequential correlation = M.y < M independent observations

M
Tcorr

Meff -

with T.opr autocorrelation time of desired observable

is to achieve fast evolution and reduce correlation times

Use in choice of T: For example, use available trial W

(Rf — Ri — V(Ri)T)2
2T

_ VU(R)

T(Rf’Rj) :Nexp — with V(Rl) = \U(R)




Acceptance and T, for the total energy Ey

Example: All-electron Be atom with simple wave function

Simple Metropolis
A T A

1.00 41 0.17
0.75 21 0.28
0.50 17 0.46
020 45 0.75

Drift-diffusion transition
T 7—v:orr A

0.100 13 042
0.050 7 0.66
0.020 8 0.87
0.010 14 094



Generalized Metropolis algorithm‘

1. Choose distribution P(R) and proposal matrix T(R¢|R;)
2. Initialize the configuration R;
3. Advance the configuration from R; to R’

a) Sample R’ from T(R’|R;).

T(Ri[R) P(R')

b) Calculate the ratio p = m P(R;)

c) Accept or reject with probability p

Pick a uniformly distributed random number x € [0, 1]
if x < p, move accepted — set Ry = R’
if x > p, move rejected — set Rt =R

4. Throw away first x configurations of equilibration time

5. Collect the averages



Variational Monte Carlo — Freedom in choice of W

Monte Carlo integration allows the use of complex and accurate W

= More representation of W than in quantum chemistry
= coDgr +c1D1+ Dy + ... of determinants



’ Jastrow-Slater wave function ‘

Commonly employed compact Jastrow-Slater wave functions

V(ry,...,ry) = J(r1, ...,y Zc, i(r1, ... rN)

Z

(]
dddtl
e A RSN
Lt
e e

—— Jastrow correlation factor

— Explicit dependence on electron-electron distances

Z ¢; D;i | — Determinants of single-particle orbitals

- and not millions of determinants



Divergence in potential and behavior of the local energy

Consider two particles of masses m;, m; and charges q;, g;

Assume r;; — 0 while all other particles are well separated

: : . HVY . .
Keep only diverging terms in v and go to relative coordinates

closetor=r; =0

1 Vv 1 v 11V
V() ~ = ——— + V()
2pij ¥ 2pp Vo pr W
11V
pij r ¥ )

where pjj = m;m;/(m; + m;)



Divergence in potential and cusp conditions

Diverging terms in the local energy

11V 11V iqj
_7,7_|_V(r):_777-|-ﬂ = finite
pijr W pijrv r

= W must satisfy Kato's cusp conditions:

~

ov
6r,-j

= wiiqi q;V(rj = 0)

rij=0

where W is a spherical average

Note: We assumed W(r;j =0) #0



Cusp conditions: example

The condition for the local energy to be finite at r =0 is

w/
v = Kijqi qj
\U/
e Electron-nucleus: p=1,q9;=1,q=-2 = | =—-7
v r=0
1 g
e Electron-electron: p=_-,¢9;=1,¢qg;=1 = | — =1/2
2 v r=0




Cusp conditions and QMC wave functions

> Electron-electron cusps imposed through the Jastrow factor
Example: Simple Jastrow factor
Fij
i) = € b
s0-Tleofe 5}
1<J

1 1
with bt = 5 o bt = byt = .

Imposes cusp conditions
+
keeps electrons apart

rij

> Electron-nucleus cusps imposed through the determinantal part



‘ The effect of the Jastrow factor‘

Pair correlation function for 1| electrons in the (110) plane of Si
gry(r,r') with one electron is at the bond center

Hood et al. Phys. Rev.

Lett. 78, 3350 (1997)

o>



Why should Wqne = J D work?

Full wave-function — Factorized wave-function
v To
N N
Full Hamiltonian —_— Effective Hamiltonian
H Heff
HT
HVY = EV — HIOP=EJd — 7<D: Eo

Heg® = Eb

Heg weaker Hamiltonian than H

= ® = non-interacting wave function D

= Quantum Monte Carlo wave function ¥ = 7D



Beyond VMC?

Removing or reducing wave function bias?

= Projection Monte Carlo methods



Why going beyond VMC?

Dependence of VMC from wave function W

-0.1070 T T

‘ \ \ \
3D electron gas at a density r =10

VMC JS.
@

-0.1075
VMC JS+3B..-~
e

-0.1080| -
VMC JS+BE-"

DMC JS ,,—"'..VMC JS+3B+BF
-0.10858- -

Energy (Ry)

L
-0.1090

PDMC JS+3B+BF
L 1 L | 1
0 0.02 0.04 0.06 0.08
. 2
Variance ( x r;‘ (Ry/electron)™)

Kwon, Ceperley, Martin, Phys. Rev. B 58, 6800 (1998)



| Why going beyond VMC?|

What goes in, comes out! Can we remove wave function bias?

’ Projector (diffusion) Monte Carlo method

> Construct an operator which inverts spectrum of H

‘Diffusion Monte Carlo‘ — e T(H—Ewer)

> Use it to stochastically project the ground state of H



’ Diffusion Monte Carlo‘

Consider initial guess V() and repeatedly apply projection operator

\U(n) — efT(,HfEref)\U(nfl)

Expand W(9 on the eigenstates W; with energies E; of H
\U(n) — e_nT(H_Eref)w(O) — Z \UI <\Ui‘\u(0)>e_n7—(Ei_Eref)
and obtain in the limit of n — oo

||m ‘U(I‘l) g \U0<\UO‘\U(0)>e7”T(E07Eref)

n—oo

If we choose E,of ~ Eg, we obtain Ii_}m v =y,




How do we perform the projection?‘

Rewrite projection equation in integral form

V(R 4 7) = /dR G(R,R, 7)V(R, t)

where G(R',R,7) = (R'|e "(H~Eet)|R)

> Can we sample the wave function?
For the moment, assume we are dealing with , soV >0

> Can we interpret G(R’, R, 7) as a transition probability?

If yes, we can perform this integral by Monte Carlo integration



’VMC and DMC as power methods‘

L __NR)E
Distribution function is given | P(R) = [dR|W(R)2

Construct M | which satisfies stationarity condition so that

lim /dR,7 ---dRiM(R,R;) - - - M(R3,R2)M(R2, R1) Pinit(R1) = P(R)

n—oo

Opposite procedure!
The matrix M is given — |M = G = (R'|e ("~ E=)|R)
We do not know !

lim /dR,,---deG(R,R,,)---G(R3,R2)G(R2,Rl)Pimt(Rl) = Vy(R)

n—o0

In either case, we want to find the dominant eigenvector of M



What can we say about the Green's function?‘

G(R.R,7) = (R "0 E|R)

G(R’,R, 7) satisfies the imaginary-time Schrédinger equation

aG(Rv ROa t)

(7‘[ — Eref)G(R7 Ro, t) = — ot

with G(R’,R,0) = §(R' — R)



Evolution equation of the probability distribution ‘

We can understand the behavior of G which satisfies

8G(R, Ro, t)

_Ere R,R ) - =
(H £)G(R, Ro, t) i

to understand evolution of the distribution W

V(R, t) = /dRo G(R, R, )V (Ry)

which satisfies the imaginary-time Schrodinger equation

OV(R, 1)

(H — Eer)V(R, t) = ot




’Can we interpret G(R’,R, 7) as a transition probability?‘ (1)

H=T
Imaginary-time Schrodinger equation is a diffusion equation

8G(R, Ro7 t')

1 2
~IV2G(R,Ry, t) = —
2V G( 3 07t) ot

The Green's function is given by a Gaussian

G(R,R,7) = (277) 3N/2 exp [_(R’2—TR)2]

Positive and can be sampled‘




’Can we interpret G(R’,R, T) as a transition probability?‘ (2)

H=V

8G(R, Ro, t)

(V(R) — Eref)G(R, Ro, t) = — ot ,

The Green's function is given by

G(R/? R’T) = &xp [_7- (V(R) - Eref)] 6(R - Rl)?

but does not preserve the normalization

It is a factor by which we multiply the distribution W(R, t)



H =T +V and a combination of diffusion and branching

Let us combine previous results

(R"—R)?

G(R',R,T) ~ (27T7')_3N/2 exp [— 5
-

] exp[—7 (V(R) — E7)]

Diffusion + branching factor leading to survival/death/cloning

Why? Trotter's theorem — | eATE)™ = ATeB™ 1 0(72)

— Green's function in the | short-time approximation ‘ to O(72)




Time-step extrapolation

Example: Energy of Liy versus time-step 7

—14.988

14980

@

[ih]

o

=1

t

£

~—-14.902

>

<

b

<

c

w

—14.994 |
PO Simple DMC, Emx (0, 1, 3/2 2, 5/2) AN
+ oo Simple DMC, Egr (O, 1 2 3/2 2, 5/2)
o Improved OMC,” Emie (0. ) 3
o ——= Improved DMC g (0, 1,72)
—14.996
0.00 0.05 0.10 0.15 0.20 0.25

Time Step T (Hartree™')

Umrigar, Nightingale, Runge, J. Chem. Phys. 94, 2865 (1993)



Diffusion Monte Carlo as a branching random walk

The basic DMC algorithm is rather simple:

1.

Sample W(O)(R) with the Metropolis algorithm

Generate My walkers Ry, ..., Ry, (zeroth generation)

Diffuse each walker as|R’ = R + ¢

where ¢ is sampled from g(¢) = (277) 7 3V/2 exp (—52/27')

. For each walker, compute the factor

|p=exp[~7(V(R) — Ewer)]|

p is the probability to survive/proliferate/die

. Adjust E,.t so that population fluctuates around target My

After many iterations, walkers distributed as Wy(R)



Diffusion and branching in a harmonic potential

V() \\J

VA G0RN

\

W) T

Walkers proliferate/die where potential is lower/higher than Ef




Problems with simple algorithm ‘

The simple algorithm is | inefficient and unstable

> Potential can vary a lot and be unbounded

e.g. electron-nucleus interaction — Exploding population

> Branching factor grows with system size



Importance sampling‘

Start from integral equation

V(R t+7)= /dR G(R',R,7)V(R, 1)

Multiply each side by trial Wy and define | 7(R, t) = Wr(R)V(R, t) |

(R, t+7) = /dR G(R,R,7)n(R, 1)

where the importance sampled Green's function is

G(R',R,7) = Wp(R')(R'|e "H=Ee)|R) /W (R)

We obtain | lim (R) = Wp(R)Wo(R)

n—oo




Importance sampled Green's function ‘

The importance sampled G (R, Ro, 7) satisfies

1 .. . oG
V26 + V- [GV(R)] + [EL(R) — Eref] G = ——~
2 or
: : ~ VVr(R) _ HV(R)
with quantum velocity V(R) = V1(R) and Ep(R) = Vr(R)

We now have in addition to diffusion and branching terms

Trotter's theorem =- Consider them separately for small enough 7



’The drift-diffusion-branching Green's function ‘

Drift-diffusion-branching short-time Green's function is

2T
x exp{—7 (Er(R) — Ewer)}

E(R',R,7) = (277) " 3N/2 exp {_(R/ —-R-— TV(R))2:| .

What is new in the drift-diffusion-branching expression?
> V(R) pushes walkers where W is large
> Er(R) is better behaved than the potential V(R)
Cusp conditions = No divergences when particles approach

As Ut — W, E;, — Ey and branching factor is smaller



Basic DMC algorithm with importance sampling‘

1. Sample initial walkers from |Wr(R)|?

2. Drift and diffuse the walkers as R" = R+ 7V(R) + ¢
where ¢ is sampled from g(¢) = (2r7) 3V 2 exp (—&2/27)

3. Branching step as in the simple algorithm but with the factor

p = exp {—7[(EL(R) + EL(R'))/2 — Eref]}

4. Adjust the trial energy to keep the population stable

— After many iterations, walkers distributed as W (R)Wo(R)



Electrons are fermions!

We assumed that Wy > 0 and that we are dealing with bosons

Fermions — W is antisymmetric and changes sign!

Fermion Sign Problem ‘

All fermion QMC methods suffer from sign problems
These sign problems look different but have the same “flavour”

Arise when you treat something non-positive as probability density



| The DMC Sign Problem

How can we impose antisymmetry in simple DMC method?

Evolve separate positive and negative populations of walkers

Simple 1D example: Antisymmetric wave function W(x, 7 = 0)

Rewrite W(x, 7 = 0) as W(x1=0)
Vv, v
where
1
Vo= (v v)

1 W(x1=0) W(x1=0)
Vo = S(vI-v) |




Particle in a box and the fermionic problem

The imaginary-time Schrodinger equation

ov

is linear, so solving it with the initial condition
VU(x,t=0) = VWV (x,t=0)—WV_(x,t=0)

is equivalent to solving

v oW _
HY, = —86; and MV =——=

separately and subtracting one solution from the other



Particle in a box and the fermionic problem

> Since E§ < E§, both W and W_ evolve to ¥}

\Ui—>

> Antisymmetric component exponentially harder to extract

Wy —v_| e 5t
XX
Vv | C Ee

as t — o0



The Fixed-Node Approximation ‘

Problem Small antisymmetric part swamped by random errors

Solution Fix the nodes! (If you don’t know them, guess them)

impenetrable

barrier \




impenetrable

barrier \

Fixed-node algorithm in simple DMC‘

How do we impose this additional boundary condition?

> Annihilate walkers that bump into barrier (and into walls)

— This step enforces boundary conditions

— In each nodal pocket, evolution to ground state in pocket

Numerically algorithm (no exponentially growing noise)

— Solution is exact if nodes are exact

— Best solution consistent with the assumed nodes



’ For many electrons, what are the nodes? A complex beast‘

Many-electron wave function W(R) = W(ry,ra, ..., ry)

— surface where W = 0 and across which W changes sign

A 2D slice through the 321-dimensional nodal surface
of a gas of 161 spin-up electrons.



Some known properties of the nodes‘

Physical space has d (=1,2,3) dimensions
» Node is (dN — 1)-dimensional surface in dN dimensions

constraint (W = 0) = | (dN — 1) -dimensional node

» Equations as r; = r; define (dN — d)-dimensional coincidence
surfaces and do not define the node completely if d > 1

» If d =1, coincidence points x; = x; define the ground-state
node completely — One-dim problems are easy to simulate



Nodal pockets can be divided up into classes‘

Start from Rg and continously reach all points with W(R) # 0
= Nodal pocket accessible from Ry

Map this subvolume over rest of the space with permutations

2

\ ¥

Xy

Figure courtesy of Matthew Foulkes
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Figure courtesy of Matthew Foulkes
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Nodal pockets can be divided up into cIasses|

Start from Rg and continously reach all points with W(R) # 0
= Nodal pocket accessible from Rg

Map this subvolume over rest of the space with permutations

Figure courtesy of Matthew Foulkes

o>



Nodal pockets can be divided up into cIasses|

Start from Rg and continously reach all points with W(R) # 0
= Nodal pocket accessible from Rg

Map this subvolume over rest of the space with permutations

Figure courtesy of Matthew Foulkes

o>



Nodal pockets can be divided up into cIasses|

Start from Rg and continously reach all points with W(R) # 0
= Nodal pocket accessible from Rg

Map this subvolume over rest of the space with permutations
Xy

Figure courtesy of Matthew Foulkes

o>



The Tiling Theorem

Consider Hamiltonian with a local potential

For ground-state wavefunction, all pockets are in the same class
Xy

Figure courtesy of Matthew Foulkes

o>
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o>
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Use the nodes of trial W — Fixed-node approximation

Use the nodes of the best available trial W wave function

W(R)=0

<

Find best solution with same nodes as trial wave function W

Fixed-node solution exact if the nodes of trial W are exact

Easy to implement in DMC with importance sampling: m > 0



Fixed-node solution and importance-sampling DMC‘

Given trial W (R), evolve ’W(R, t) = Vp(R)V(R, t) ‘ as

_%Vzﬁ +V- [7r V(R)] + [EL(R) - Eref] ™= _g:-
with V(R) = ST (I(g) and Er(R) = TJTT(,(-S)

Fixed-node approximation — |7(R,t) >0



Fixed-node solution and behavior at the nodes‘

Within the nodes | HWpn (R) = EpxWen(R) |

If the nodes not exact — Wpn # Vg

If the nodes not exact — Discontinuity of derivatives at the nodes

‘HWFN(R) = EFN\UFN(R) -+ (5‘ for R € 6Q

Note that the § function does not affect the computed energy

/WFNHWFN = /‘UFN(EFNWFN +9) = /WFNEFN‘UFN = Epn



Fixed-node solution is an upper bound to exact energy

In a nodal pocket Q of the trial wave function W

HVpn(R) =

ErnVren(R)

ReQ

with Wgn(R) =0 for R € Q — Extend solution over all space

which satisfies

Upn(R =i Z 1)Pwen(PR)
[ AR Uy (RyHFpx(R)

= = =Epn > Eo
J ARV (R)Wen(R)




Fixed-node DMC and excited states

No general fixed-node variational principle for excited states

T=0:
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Fixed-node DMC and excited states (1)

No general fixed-node variational principle for excited states

> 0:

For t — o0, only pockets of the lowest energy class are occupied

It can happen that Epn < Ecxact



Fixed-node diffusion Monte Carlo and excited states (2)

Is fixed-node diffusion Monte Carlo variational?

For lowest state in each 1-dim irreducible representation

What about “real” excited states?‘

In general, exact excited state for exact nodal structure
For excited states, even bigger role of the trial wave function

— Enforces fermionic antisymmetry + selects the state

In practice, for reasonable wave function, no collapse

— fixed-node DMC approaches excited state from above



’ Have we solved all our problems?

Results depend on the nodes of the trail wave function W

’ Diffusion Monte Carlo as a black-box approach?‘

enmap for atomization energy of the G1 set

DMC CCSD(T)/aug-cc-pVQZ
HF orb Optimized orb CAS
EMAD 3.1 2.1 1.2 2.8 kcal/mol

Petruzielo, Toulouse, Umrigar, J. Chem. Phys. 136, 124116 (2012)

With “some” effort on W, we can do rather well



Diffusion Monte Carlo as a black-box approach?‘

Non-covalent interaction energies for 9 compounds from S22 set

DMC with B3LYP /aug-cc-PVTZ orbitals versus CCSD(T)/CBS

' ‘ Apniap = 0.058 kecal/mol ‘

Dubecky et al., JCTC 9, 4287 (2013)

With “practically no” effort on W, we can do rather well



Diffusion Monte Carlo end excitation energy

Excitation energy and wave function dependence

Vertical excitation energy (eV)

5.3

52 r

51 r

5.0

4.9

4.8

* VMC —e—
DMC —e&—
)
¢
[0]
@ o)
[0]
exFCl
| ccs . _ _ % 0.0
CAS CIPSI

HF/HL CIS (6,5) (6,10) (14,13) 1k 6k 11k 18k

Cuzzocrea, Scemama, Briels, Moroni, Filippi, JCTC 16, 4203 (2020)

DMC is not a panacea but effort on W pays off!



| DMC and solid state calculations |

Example: Structural/magnetic properties of superconducting FeSe
— Accurate lattice constants, bulk moduli, and band dispersion

— Resolving relative energetics of different magnetic ordering

' \/\/‘(\/\'\
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Busemeyer, Dagrada, Sorella, Casula, and Wagner PRB (2016)



Alternatives to fixed-node DMC: Releasing the nodes‘

First do a fixed-node DMC simulation
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Alternatives to fixed-node DMC: Releasing the nodes‘

Then release the nodes

» Red and blue solutions collapse to boson ground state, but
their difference approaches the fermion ground state

> Back to the sign problem: exponentially growing noise



Alternatives to fixed-node DMC: Determinantal QMC‘ (2)

Given single-particle basis, perform projection in determinant space

Different way to deal with fermionic problem

— Determinantal QMC by Zhang and Krakauer
Appears less plagued by fixed phase than DMC by FN

— Full-Cl QMC by Alavi
Start from Wep =D . ¢iD;

8\IJ 86,'
HY = —E — H,'J'Cj = —E



DMC in summary

The fixed-node DMC method is (in general)
> Easy to do

» Stable

» Accurate enough for many applications in quantum chemistry

... especially in large systems

» Accurate enough also for subtle correlation physics

Use of fixed-node DMC for computation of excited states

» In the general landscape, we are doing quite well !

> Sensitivity to wave function but relatively robust

— basis, size of the determinantal expansion



’ Beauty of quantum Monte Carlo — Highly parallelizable

V(ry,...,ry) — Ensemble of walkers diffusing in 3N dimensions

VMC — Independent walkers = Trival parallelization

DMC — Nearly independent walkers = Few communications
Easily take great advantage of parallel supercomputers!

As early as 2001 . ..

@ Up to SizpzHip0 and Cyigg !
sl T B
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»
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Williamson, Hood, Grossman (2001)




Human and computational cost of a typical QMC calculation

Task Human time Computer time
Choice of basis set, pseudo etc. 10% 5%
DFT/HF/Cl runs for W setup 65% 10%
Optimization of W 20% 50%

DMC calculation 5% 35%



To conclude: ongoing research in QI\/IC‘

» Search for different forms of trial wave function

Neural network architecture — W of multi-electron orbitals
“F

Pfau, Spencer, Matthews, Foulkes, Phys. Rev. Res. (2020)

» Push optimization techniques to larger systems
» More work on transition metals

» Alternatives to fixed-node diffusion Monte Carlo



’Other applications of quantum Monte Carlo methods‘

> ’ Electronic structure caIcuIations‘

Strongly correlated systems (Hubbard, t-J, ...)

Quantum spin systems (Ising, Heisenberg, XY, ...)

>
>
» Liquid-solid helium, liquid-solid interface, droplets
» Atomic clusters

>

Nuclear structure

» Lattice gauge theory

Both zero (ground state) and finite temperature
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