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m Atomic orbitals (AOs): xk. Non-orthogonal set of one-electron functions.
Xi(r) =Y Piy(r)ewll?
]

P : Spherical harmonics or Polynomial. p = 1: Slater, p = 2: Gaussian
m Molecular orbitals (MOs): LCAO. Orthonormal set of one-electron functions.

¢i(r) =) Caoxalr)
k

m Many different types of MOs: Hartree-Fock, Kohn-Sham, localized, natural, ...
m N-electron Wave function: Anti-symmetric product of MOs = Slater determinant

¢1(r1)  da(r1) ... on(r1)
o1(r2)  ¢2(r2) ... on(r2)

W(r17r27"'7rN): .

brlrn) dalrw) - dnlew)
. TINeeeerenp!’nnknLBn\l!|:odo oo
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MOs are linear combinations of AOs (LCAO)
One can build as many MOs as AOs
The space spanned by MOs is the same as the space spanned by AOs

m Hartree-Fock MOs are divided into occupied and virtual MOs
m Occupied Hartree-Fock MOs: Orthonormal set of LCAOs which minimize the energy
of a Slater determinant
m Virtual Hartree-Fock MOs: The orthonormal complement of the Occupied MOs
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The Slater determinant can be rewritten by separating 1- and |-spin electrons:

\U(rl, rn,..., rNT’ rN¢+17 ceey I’N) =

¢1(r1)  d2(r1) oo ong(r1) d1(rnvs+1)  d2(rnvp+1) o dn (rv+1)
¢1(r2)  ¢2(r2) ... o (r2) y d1(rne+2)  d2(rm2) oo Oy (rvg+2)
¢1(;‘NT) ba(rn,) - QSNT(.VNT) le(.rN) Pa(rnv) - (bNL-(rN)

= DT(I’l,Q, .. "rNT) X DJ,(rNT-‘rlv .. .,FN)
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rQ ->< Electron correlation
@ -

w2 = (Dy x D))?
2 2

m The N-electron density is the product of a density of N} 1-spin electrons and a
density of N |-spin electrons.

m Mean-field approach: 1-spin and |-spin electrons are statistically independent

m Although same-spin electrons are not statistically independent, the
single-determinant model is said to be uncorrelated.



- -
I'Q ->< Electron correlation
@ -

We have seen that electron correlation can be introduced with a Jastrow factor:

\U(rl, .. .,I’N) = DT(rl, .. ”rNT) X Di(rNTH,. . .,rN) X exp (J(l’l, o .,I’N))

with N
by |ri —rj|
J(r,. .. =y ———r J 4
(r1,eorm) Zl+b2|ri_rj|
1<J

J couples T-spin and |-spin electrons, so

W(rl,. . '7rN)2 7& pT(rla .. '7rNT) X Pi(rN¢+1a .. '7rN)

and 1-spin and |-spin electrons are correlated.

Correlation energy

Ecor[w] = E[W] - EHF




r2 —>< N-electron basis functions
@ -

m V is an N-electron function
m |t can be expressed as a linear combination of N-electron functions

W(I’l,..., ZC, r1,...,N)

m If the basis is infinitely large, the exact wave function can be obtained by finding
the ¢; which minimize the energy.

E(\Ul) > E(\Um) > E(de) > E(Woo) - Eexact

with 1 < m < Njy.



rQ ->< Slater determinants
@ -

A natural N-electron basis is the basis of all possible Slater determinants that can be
built with a given set of M MOs:

ol )ea(5) o) (5)-
() a( ) en(2) ool oo 2)

Each basis function is antisymmetric = W is antisymmetric



I'Q ->< Slater determinants
@ -

The size of the basis grows fast:

M= (NT!(/\/IIVIi NT)!) : (NU(’V’Mi ’VU!>

18 electrons in 111 orbitals:
Ny = 2.5 x 10%® determinants.

\U(I’l, ey rN) = DlT(rl, ceey rNT) Dli(rNT-H? ey rN) +
2 DQT(rl, ey rNT) Dgi(r/\/?_i_l, SN I’N)
v(rg,..., rN)2 # pr(re, ...,y ) X py(rag 41, - - -, rnv)== electron correlation.



r2 _>< Configuration state functions
@ -

m The exact wave function is an eigenfunction of the spin operator $2
m Slater determinants are eigenfunctions of S,, but not of §2

= To obtain W eigenfunction of 52, one needs to have in the determinant set all
possible spin flips in open shells

+ -+ +- +- +- -+ -+
+ -+ -+ -+ $- +- $-
t | =a| #= | +b| —F | +c| #= [+d]| —F |[+e| #= [+f| -+
+
it

+- - —% -4 ~% +-
+4 +4 +4 +4 +4 +4




r2 _>< Configuration state functions
@ -

m Configuration state functions (CSF): Linear combinations of Slater determinants,
which are eigenfunctions of S2:

+ - —+ $— —4

+ Ll -+ - -+ #—
| = Axs|| =+ [+] #= [-] #= || —¢
1 $— —+ -+ -
f# +4 o +4 44

—+ $— $- $— -4 -4

3 —+ —+ -+ - $- $-

+oBx 22w |+ 4 [+ 2= |-2| ¢ $- -+

$— - —+ —+ -+ -

+4 +4 +4 +4 +4 +4

m The CSF basis is smaller than the determinant basis: one selects only basis
functions with the desired (52)



r2—>< Configuration interaction
@ -
Configuration interaction (Cl)

m V is a linear combination of Slater determinants (or CSFs)
m The energy is minimized by diagonalizing the Hamiltonian in the basis of Slater
determinants (or CSFs)
(V[H|V)

E=11100

(Vv |

Cl methods

Differ by the choice of the basis:
m Full configuration interaction (FCI): All possible Slater determinants. O(N!)
m Cl with Single and Double substitutions (CISD): No more than one or two MOs
differ from the Hartree-Fock determinant. O(N2N2)
m Complete Active Space (CAS): Only a subset of m MOs can be substituted from
the Hartree-Fock determinant. O(m!)




r2_>< Dynamic vs static correlation
@ -

m Dynamic : short-range effects due to the Coulomb hole. Hartree-Fock qualitatively
correct, many small contributions.

m Static : near-degeneracies. Hartree-Fock qualitatively incorrect, few large
contributions.

m CHy, 6-31G: 38 x 10° determinants. Dynamic

EHF -40.1805 a.u
EFCI -40.3011 a.u

m Dissociated Hp, STO-6G: 2 determinants (1 CSF). Static

75 (10)02) ~ 62(1)02(2)

Enr  -0.5572 a.u € =-0.08619 a.u
EFCI -0.9421 a.u € = -0.08619 a.u

W(1,2) =




r2_>< Dynamic vs static correlation
@ -

m Dynamic: Well described by a Jastrow factor
m Static: Well described by a linear combination of Slater determinants

m Optimal representation:

V= (Z C;D,-) exp (J)

m Interplay between static and dynamic correlation: ¢; should be optimized in the
presence of exp(J).
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Size consistency: Strict separability. When two systems A and B are far enough to not
interact:
E[\UA“_B] = E[\UA] + E[WB]

m If the MOs are localized on fragments A and B, determinants can be written as
[KAB) = 1418 = |14) & |J°)

m FCIAB is built as the tensor product of FCI* and FCIB

Va.g=> cklK*B) (ch |14 ) ® <¥cf|JB>>

K
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@ -
Cl is usually not size-consistent. Example: CISD

The CISD space for A... B is not the tensor product of the spaces of A and B
m |14) = THIHFA) |JB) = THI|HFB)
m |14JB) = THTHIHFAHF5)
k/ A..B\ . L ..
m |KABY = Un’,’ﬂHF ) : quadruple excitation, missing in CISD space
The size-consistency error is positive:

E[VEisg] > EMVEspl + E[VEsp]

.

Size-consistent particular cases

Hartree-Fock FClI CAS-SCF

v
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rQ ->< Configuration Interaction
@ -

m Define an orthonormal basis of N-electron functions: Slater determinants or CSFs

{IN}

m Express the wave function on this basis: (/|W) = ¢

vy =3 qln

/

m The energy is given by
(W|H|W)

=y

m The optimal ¢; are obtained when |W) is an eigenfunction of H, and E is the
corresponding eigenvalue



-r2:>< Diagonalization of the Hamiltonian

m (/|J) = d;y, because MOs are orthonormal.
= Hy = (I|H]J)
= (W) =X aciy=3c =1

EWV] =) ccsHy
1

m When Ny is small < 10*, direct diagonalization of H

m When Ny is large, Davidson's algorithm to extract the desired roots.
Iterative computation of [W) =", wy|l) =", |I)(I|H|V) (power method).
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Thanks to (/|J) = d;:
m Diagonal terms:

Hi = > (lhi) + > (il

i

m [J) = T5|1): |I) and |J) differ by one MO:

iy = (plhlr) + > (pillr)

m [J)y = T7|0): |I) and |J) differ by two MOs:

Hiy = (pql|rs)
m |/) and |J) differ by more than two MOs:
Hy=0



rQ ->< Computational aspects

There are:
m O(N*) two-electron integrals

m Ny Slater determinants

Algorithms

m Integral-driven

m Loop over integrals
m Add the contributions to |W)

m Determinant-driven

m Loop over determinants
m Usually, Ny >> O(N*), so less efficient than determinant-driven
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m Same symmetry:
Obtained as different eigenvectors of H. Expanded on the same set of

determinants:
Wi = b
!

m Lowest states of different symmetries:
H is block-diagonal:

m Pick only determinants of the desired symmetry
m Obtain the ground state

Expanded on different sets of determinants:

wik) — Z c,(k)|l(k)>
I
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m All Cl methods are approximations of the FCI
m They differ by the choice of the Slater determinant basis

m CIS, CISD, CISDT, CISDTQ, ... : Number of differences wrt Hartree-Fock
(dynamic)
m CAS, RAS, GAS, ... : Clin an active space (static)

m MR-CI : active space + CISD for each reference (static + dynamic)

m MP2, CAS-PT2, dynamic correlation is computed with perturbation theory:
cheaper than CI
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FCl: Exact solution of AW = EW in a complete basis of Slater determinants

m The determinant basis is derived from the one-electron basis set

m Only approximation : one-electron basis-set incompleteness
m Intractable : O(N!) scaling

m All the post-Hartree-Fock methods are approximations of the FCI within the same
basis set
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w LrossMark

Pushing configuration-interaction to the limit: Towards massively parallel

MCSCEF calculations

Konstantinos D. Voglat2|s 1.3.6) Dongxia Ma,"® Jeppe Olsen,? Laura Gagliardi,’

and Wibe A. de Jong?®?)

'Department of Chemistry, Minnesota Supercomputing lnmrute and Chemical Theory Center,

University of Minnesota, 207 Pleasant Street South lis, Mii 55455-0431, USA
2Department of Chemistry, Aarhus University, langelandsgade 140, 8000 Aarhus C, Denmark
iCompula!ional Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

(Received 12 June 2017; accepted 20 October 2017; published online 14 November 2017)

A new large-scale parallel multiconfigurational self-consistent field (MCSCF) implementation in
the open-source NWChem computational chemistry code is presented. The generalized active space
approach is used to partition large configuration interaction (CI) vectors and generate a sufficient
number of batches that can be distributed to the available cores. Massively parallel CI calcu-
lations with large active spaces can be performed. The new parallel MCSCF implementation is
tested for the chromium trimer and for an active space of 20 electrons in 20 orbitals, which can
now routinely be performed. Unprecedented CI calculations with an active space of 22 electrons
in 22 orbitals for the pentacene systems were performed and a FTis @RS GO wE GHEFTT
with an active space of 24 electrons in 24 orbitals for the chromium tetramer was possibleB¥it
chromium tetramer corresponds to a Cl expansion of one trillion Slater determinants (914 058 513 424)
and is the largest conventional CI calculation attempted up to date. Published by AIP Publishing.
https://doi.org/10.1063/1.4989858




-r2:>< The Full Cl Hamiltonian is very sparse

m Each row (/| of H has non-zeros when |J) differs by less than 3 MOs
(Slater-Condon rules)

m Each row has at most O(N2N2) non-zero elements
m H is symmetric, the same applies to columns

= Davidson's algorithm involves computing (/|H|W)

m Sparse matrix-vector multiplication: O(Ny x N2N?2)
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= DMRG?

m FCI-QMC : Stochastic solution of FCI equations.?
m First row diatomics cc-pV5Z.¢

m Selected Configuration Interaction

m Scaling is still O(N!), but pre-factor is killed.
m Much larger active spaces are possible today

2G. K.-L. Chan , arXiv:0711.1398 (2007)
5G.H. Booth , J. of Chem. Phys. 131, 054106 (2009).
°D. Cleland , J. Chem. Theory Comput. 8, 4138 (2012)
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OpenMolcas: From Source Code to Insight

‘submitted on 06.06.2019, 09:41 and posted on 06.06.2019, 18:08 by Ignacio Fdez. Galvan,
Morgane Vacher, Ali Alavi, Celestino Angeli, Jochen Autschbach, Jie J. Bao, Sergey |. Bokarev, Nikolay
A. Bogdanov, Rebecca K. Carlson, Liviu F. Chibotaru, Joel Creutzberg, Nike Dattani, Mickagl G. Delcey,
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Plasser, Markus Reiher, Andrew M. Sand, Igor Schapiro, Prachi Sharma, Christopher J. Stein, Lasse chem RXIV
Kragh Serensen, Donald G. Truhlar, Mihkel Ugandi, Liviu Ungur, Alessio Valentini, Steven Vancoille,
Valera Veryazov, Oskar Weser, Per-Olof Widmark, Sebastian Wouters, J. Patrick Zobel, Roland Lindh

CATEGORIES

In this article we describe the OpenMolcas environment and invite the computational RiCoepitatanalichemisTant Moreling

« Theory - Computational

* Chemoinformatics - Computational Chemistry
number of new developments realized during the transition from the commercial = Spectroscopy (Physical Chem.)

MOLCAS product to the open-source platform. The paper initially describes the technical gEin=talad CheniuallBiopatiae

details of the new software development platform. This is followed by brief presentations

chemistry community to collaborate. The open-source project already includes a large

KEYWORD(S)

active space self-consistent field, density matrix renormalization group (DMRG) Molecular dynamics

nal wave function and density functional theor Wave function analysis Spectroscopy

ulEENSome of these implementations include an array of additional options and

of many new methods, implementations, and features of the OpenMolcas program suite.

hese developments include novel wave function methods such as stochastic complete

methods, and hybrid multiconfigurat

Basis sets
functionalities. The paper proceeds and describes developments related to explorations

of potential energy surfaces. Here we present methods for the optimization of conical LICENCE
intersections, the simulation of adiabatic and nonadiabatic molecular dynamics and [@O88) ccevncap 4o

interfaces to tools for semiclassical and quantum mechanical nuclear dynamics.
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‘ I ‘ Journal of Chemical Theory and Computation
& Cite This: . Chem. Theory Comput. 2017, 13, 5468-5478 pubs.acs.org/JCTC

Cheap and Near Exact CASSCF with Large Active Spaces
James E. T. Smith,** Bastien Mussard, Adam A. Holmes, and Sandeep Sharma™

Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States

ABSTRACT: We use the recently developed Heat-bath Configuration The HCISCF module

I.nteracnon (HCI) algorithm as an efficient active space solver to perform

self-consi field calculations (HCISCE) with large f
act)ve spaces. We give a detailed derivation of the theory and show that ; pysc min(@|H|v)
lti d with non-variationality of the HCI procedure can be |! [(orbital optimizer)  *

overcome by making use of the Lagrangian formulation to calculate the HCI
relaxed two-body reduced density matrix. HCISCF is then used to study the
electronic structure of butadiene, pentacene, and Fe—porphyrin. One of the
most striking results of our work is that the converged active space orbitals
obtained from HCISCF are relatively insensitive to the accuracy of the HCI
calculation. This allows us to obtain nearly converged CASSCF energies with  |'--
an estimated error of less than 1 mHa using the orbitals obtained from the
HCISCF procedure in which the int transformation

Two-electron integrals
FCIDUMP

DICE " min(y)f10) l

'

Two-body reduced
density matrix

the dominant cost.

used mainly for integral transformation. Fma]ly, we also show that active space orlnhls can be optimized using HCISCF to
substantially speed up the convergence of the HCI energy to the Full CI limit because HCI is not invariant to unitary
transformations within the active space.




-r2:>< Selected Configuration Interaction (SCI)

m Select determinants on-the-fly

m with perturbation theory (CIPSI') A
m or based only on the matrix elements of H (SHCI?)

m Target spaces : Full-Cl, MR-CISD, large CAS, ...
m Use PT2 to estimate the missing part

!B. Huron, J.P. Malrieu, and P. Rancurel, J. Chem. Phys. 58, 5745 (1973).
2A.A. Holmes, C.J. Umrigar, and S. Sharma, J. Chem. Phys. 147, 164111 (2017)
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Start with Do = {|HF)} and |Wo) = |HF).
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Start with Do = {|HF)} and |Wo) = |HF).
iHV,)?

¥i) € {Tsp|Wa)} \ {Dn}, compute e; = gy le




TR

Start with Do = {|HF)} and |Wo) = |HF).
iHV,)?

Vi) € {Tsp|Wa)} \ {Dn}, compute e = m
if |ei| > €n, select |i)
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Start with Dy = {|HF)} and |Vo) = |[HF).
- al / 2
V1]i) € {Tsp|Vn)} \ {Dn}, compute ¢ = %
if |ei| > €n, select |i)
Estimated energy : E(V,,) + Ep12(Vy) = E(Wn) + > &
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Start with Do = {|HF)} and |Wo) = [HF).
Vi) € {Tsp|Wa)} \ {Da}, compute e = i d%er
if |ei| > €n, select |i)

Estimated energy : E(V,,) + Ep12(Vy) = E(Wn) + > &
Dpy1 =DpU {Ui(selected)|i>}

— E(Wa) =]
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Start with Do = {|HF)} and |Wo) = |HF).

- TS i 2
Vi) € {Tsp|Wa)} \ {Dn}, compute & = i

if |ei| > €n, select |i)
Estimated energy : E(V,,) + Ep12(Vy) = E(Wn) + > &
Dny1 = Dp U {Uj(selected) 1) }
Minimize E(W,1) (Davidson),
Vi1 = Vi + X i selected) Gl 1)
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Start with Do = {|HF)} and |Wo) = |HF).

- TS i 2
Vi) € {Tsp|Wa)} \ {Dn}, compute & = i

if |ei| > €n, select |i)
Estimated energy : E(V,,) + Ep12(Vy) = E(Wn) + > &
Dny1 = Dp U {Uj(selected) 1) }
Minimize E(W,1) (Davidson),
Vi1 = Vi + X i selected) Gl 1)
[@ Choose €511 < €,
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Start with Dy = {|HF)} and |Vo) = |[HF).
Vi) € {Tsp|Wa)} \ {Dn}, compute e = %
if |ei| > €n, select |i)
Estimated energy : E(V,,) + Ep12(Vy) = E(Wn) + > &
Dny1 = Dp U {Uj(selected) 1) }
Minimize E(W,1) (Davidson),
Vi1 = Vi + X i selected) Gl 1)
[@ Choose €511 < €,
Iterate
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-149.2 4 ; T T
Excited state, Eyyr —+—
-149.3 | Ground state, Eyar —¢—
Excited state, Eyar+PT2 K
-149.4 + : Ground state, Eyar+PT2 1
-149.5
3 1496 PN
> -149.7
g H2N+ NH2
S -149.8
-149.9 ¢ aug—cc—pVDZ
-150
-150.1
_150.2‘ ‘\ 1 1 | 1 1 1 1
10 100 1000 10000 100000 1x106 1x107  1x108

Number of determinants
m When Ny = Ngcp, Ep12 = 0, Cl is solved exactly.

m Every Cl problem can be solved by iterative perturbative selection



I'Q ->< Extrapolated FCI energies

\ L ES
TS . -GS
&
s
S, -Moab
B>
20
% el | exFCl : Extrapolate E = f(EpT2) at
g Ept> = 0, estimates the complete Cl
g solution.
S 1498}
2
]
N
~150.0f
06 05 D04 03 D02 o1 00

Second-order energy E() (a.u.)



r2 —>< Consistent energies
@ -
The error of Egc) ~ E + Epts is proportional to Epts

Erci = E+ (1 +a) Epm

For 2 states

| A\

1 1
EY = EO 1 @a+aM)EY,
2 2
EQ = E® 4+ (1+a@)ER)

If o = 0@ and EM. = E?)

PT2 PT2

2 1
EISC)I - EISC)I = E® — W




I'Q ->< Consistent energies
@ -

-149.2 T T T Ty T T
Excited state, Eyqr —+—
-149.3 - Ground state, Eygy —%— T2
Excited state, Eya+PT2 % 5 o
-149.4 | : Ground state, Eyar+PT2 1 s
-149.5 S, -mar
= >
E -149.6 %o )
3 -149.7 § —196
] g
5 -149.8 ; k=
_—K Q
-149.9 S 1498
o
£
-150 N
'150'1[3”, ~150.0)
_1502 1 1 1 i 1 1 1 1
10 100 1000 10000 100000 1x10® 1x107  1x108 -06 05 -04 -03 -02 -01 00
Number of determinants Second-order energy E@ (a.u.)

m —(1+ «) is the slope of the extrapolation curve
m oM ~ a® can be obtained using state-average orbitals
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m In a Cl calculation:
W) = all)
/

= In QMC:
\U(rly-.-er) = (Z Cka(r17 7rN)> eJ(I’l,...,I'N)
k
= Z Ck <DK(r1, o rN)eJ(r1,...,rN))
k

Computationally expensive

m We need to evaluate all the Slater determinants at each MC step

m Compacting the wave function is desirable
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r2—>< Evaluation of a determinant
@ -

Build the Slater Matrix Aj; = ¢;(r;):

o1(r1)  ¢2(r1) ... on(r1)
o1(r2)  @a(r2) ... on(r2)

é1(rn)  d2(rn) . dn(ra)

LU factorization (dgetrf) : A=PLU, costs O(N3)
det A = Hi U;i



- -
r2—>< Evaluation of the derivatives of a determinant
@ -

Taeta 2 Vil
J

A,-(detA) . L\ a-1
e T ;A,dy(r,).Aﬁ

Inverse of A (dgetri) : costs O(N3)
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A and A1 are known, u and v are column vectors,

-1 A~ luvtA-l
i — A1 _
) R S
Costs O(N?).

Single orbital change:

0
or(r) — ¢i(r) :
u= : ,v= 1|11,
or(rn) — di(rn) :
L 0 .




rQ ->< Computational scaling

Ng Nat Nay
V()= Dk =) > CjDir(ry) Djy(r))
k i
m Dy(ry) : vector of Ny4 elements
m Dy(ry) : vector of Ny, elements

m C: Ngp x Ng; matrix. The matrix contains Ny non-zero elements

C is constant in a QMC calculation = preprocessing.




I'Q ->< Computational scaling

At every MC step, we need to evaluate:

v = (D+/(C)Dy)
Vv = V,;D;1.(CD)or(D;7C).V;D,
AV = ADy'.(CD))or(D4+7C).A,D;
vnonflocw — Vnonfloc DTT(CDi) or (DTTC) Vnonfloc DJ,

pseudo pseudo pseudo

(T electrons and | electrons)



r2—>< Computational scaling
O(NdT S NglecT)

DT and Di’ VDT and VDi, ADT and ADi
O(Ny), tiny prefactor

m Sparse vector-matrix product DTT.C : Ny operations, returns a Ny vector

4

Dot product with D} : Ny operations, produces a scalar
Matrix product with VD : 3Nejec| X Ng, operations, produces a 3Ncjec| vector
Matrix product with AD| : Njec| X Ng| operations, produces a Njec| vector

Matrix product with Vg‘soerlllgéocD¢ . Nelecy % Ng operations, produces a Nejec|
vector

v
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Use large CIPSI wave functions as trial wave functions for DMC3:

H,O
m best estimate of the
exact energy

m ~ 109 Slater
determinants

T T T T T
—76.39 |H e o Ful-CI g
+ + DMC/CIPSI
—76.40 [+ . E
— Estimated exact
=
f_é/ —76.41 |- g
=
&6
T —76.42 |- g
<
=
—76.43 | -
—76.44 [* e
207 @5z Q¢ 17 Dz
0.0 0.1 0.2 0.3 0.4 0.5

1/n [ cc-pCVnZ basis set |

3Caffarel et al, (2016), J. Chem. Phys., 144:15(151103)



-rg:-x Effect of the Jastrow factor on the Cl wave function

m Adding a Jastrow factor on top of a Cl wave function:
m The N-electron basis is no more orthonormal

<D[ eJ|DK eJ> 7é 5IK

m Double-counting of correlation

m Dynamic correlation from the determinants
m Dynamic correlation from the Jastrow

m The Cl coefficients are no more optimal




-rg:-x Effect of the Jastrow factor on the Cl wave function

m Re-optimizing the Cl coefficients in the presence of the Jastrow:

m Increases large coefficients
m Reduces small coefficients

m Solving H.C = E S.C is difficult:
m Statistical errors in matrix elements of H and S
m Determinants with tiny Cl coefficients have a negligible contribution to W?2
= The error on (K|H|L) is often larger than the expectation value when c is small.
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m Nodal surfaces (DMC energies) are determined by the determinant expansion.

m Accurate energy differences need balanced wave function qualities between the
states

Two different strategies:
Stochastic optimization
m Use a deterministic method which gives a qualitatively good description (minimal
CAS-SCF)
m Reoptimize all the parameters: MOs, Cl, Jastrow
Deterministic optimization

m Use a deterministic method which gives a reasonable AE (MR-CI, CIPSI)
m Run a DMC without modifying the wave function.
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Pros

Cons

Deterministic
optimization

Very good quality control
Smooth potential energy surfaces

Very large expansions
Limited to small systems

Stochastic
optimization

Compact wave functions
Can be applied to large systems

Noisy optimization
Harder to get balanced energies
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Good strategy towards large systems: The best of both worlds
m Small CIPSI expansions in a large active space : = compact

m Enforcing constant Ept, for selecting determinants = AE ~ AEgc consistent
quality for both states

m Optimize a Jastrow factor in QMC

m Re-optimize all parameters in QMC
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